Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 174
Filtrar
1.
J Nucl Med ; 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38871388

RESUMO

The development of theranostic radiotracers relies on their binding to specific molecular markers of a particular disease and the use of corresponding radiopharmaceutical pairs thereafter. This study reports the use of multiamine macrocyclic moieties (MAs), as linkers or chelators, in tracers targeting the neurotensin receptor-1 (NTSR-1). The goal is to achieve elevated tumor uptake, minimal background interference, and prolonged tumor retention in NTSR-1-positive tumors. Methods: We synthesized a series of neurotensin antagonists bearing MA linkers and metal chelators. The MA unit is hypothesized to establish a strong interaction with the cell membrane, and the addition of a second chelator may enhance water solubility, consequently reducing liver uptake. Small-animal PET/CT imaging of [64Cu]Cu-DOTA-SR-3MA, [64Cu]Cu-NT-CB-NOTA, [68Ga]Ga-NT-CB-NOTA, [64Cu]Cu-NT-CB-DOTA, and [64Cu]Cu-NT-Sarcage was acquired at 1, 4, 24, and 48 h after injection using H1299 tumor models. [55Co]Co-NT-CB-NOTA was also tested in HT29 (high NTSR-1 expression) and Caco2 (low NTSR-1 expression) colorectal adenocarcinoma tumor models. Saturation binding assay and internalization of [55Co]Co-NT-CB-NOTA were used to test tracer specificity and internalization in HT29 cells. Results: In vivo PET imaging with [64Cu]Cu-NT-CB-NOTA, [68Ga]Ga-NT-CB-NOTA, and [55Co]Co-NT-CB-NOTA revealed high tumor uptake, high tumor-to-background contrast, and sustained tumor retention (≤48 h after injection) in NTSR-1-positive tumors. Tumor uptake of [64Cu]Cu-NT-CB-NOTA remained at 76.9% at 48 h after injection compared with uptake 1 h after injection in H1299 tumor models, and [55Co]Co-NT-CB-NOTA was retained at 60.2% at 24 h compared with uptake 1 h after injection in HT29 tumor models. [64Cu]Cu-NT-Sarcage also showed high tumor uptake with low background and high tumor retention 48 h after injection Conclusion: Tumor uptake and pharmacokinetic properties of NTSR-1-targeting radiopharmaceuticals were greatly improved when attached with different nitrogen-containing macrocyclic moieties. The study results suggest that NT-CB-NOTA labeled with either 64Cu/67Cu, 55Co/58mCo, or 68Ga (effect of 177Lu in tumor to be determined in future studies) and NT-Sarcage labeled with 64Cu/67Cu or 55Co/58mCo may be excellent diagnostic and therapeutic radiopharmaceuticals targeting NTSR-1-positive cancers. Also, the introduction of MA units to other ligands is warranted in future studies to test the generality of this approach.

2.
bioRxiv ; 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38853889

RESUMO

Objectives: Disialoganglioside 2 (GD2), overexpressed by cancers such as melanoma and neuroblastoma, is a tumor antigen for targeted therapy. The delivery of conventional IgG antibody technologies targeting GD2 is limited clinically by its co-expression on nerves that contributes to toxicity presenting as severe neuropathic pain. To improve the tumor selectivity of current GD2-targeting approaches, a next-generation bispecific antibody targeting GD2 and B7-H3 (CD276) was generated. Methods: Differential expression of human B7-H3 (hB7-H3) was transduced into GD2+ B78 murine melanoma cells and confirmed by flow cytometry. We assessed the avidity and selectivity of our GD2-B7-H3 targeting bispecific antibodies (INV34-6, INV33-2, and INV36-6) towards GD2+/hB7-H3- B78 cells relative to GD2+/hB7-H3+ B78 cells using flow cytometry and competition binding assays, comparing results an anti-GD2 antibody (dinutuximab, DINU). The bispecific antibodies, DINU, and a non-targeted bispecific control (bsAb CTRL) were conjugated with deferoxamine for radiolabeling with Zr-89 (t1/2 = 78.4 h). Using positron emission tomography (PET) studies, we evaluated the in vivo avidity and selectivity of the GD2-B7-H3 targeting bispecific compared to bsAb CTRL and DINU using GD2+/hB7-H3+ and GD2+/hB7-H3- B78 tumor models. Results: Flow cytometry and competition binding assays showed that INV34-6 bound with high avidity to GD2+/hB7-H3+ B78 cells with high avidity but not GD2+/hB7-H3+ B78 cells. In comparison, no selectivity between cell types was observed for DINU. PET in mice bearing the GD2+/hB7-H3- and GD2+/hB7-H3+ B78 murine tumor showed similar biodistribution in normal tissues for [89Zr]Zr-Df-INV34-6, [89Zr]Zr-Df-bsAb CTRL, and [89Zr]Zr-Df-DINU. Importantly, [89Zr]Zr-Df-INV34-6 tumor uptake was selective to GD2+/hB7-H3+ B78 over GD2+/hB7-H3- B78 tumors, and substantially higher to GD2+/hB7-H3+ B78 than the non-targeted [89Zr]Zr-Df-bsAb CTRL control. [89Zr]Zr-Df-DINU displayed similar uptake in both GD2+ tumor models, with uptake comparable to [89Zr]Zr-Df-INV34-6 in the GD2+/hB7-H3+ B78 model. Conclusion: The GD2-B7-H3 targeting bispecific antibodies successfully improved selectivity to cells expressing both antigens. This approach should address the severe toxicities associated with GD2-targeting therapies by reducing off-tumor GD2 binding in nerves. Continued improvements in bispecific antibody technologies will continue to transform the therapeutic biologics landscape.

3.
Angew Chem Int Ed Engl ; 63(18): e202319578, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38442302

RESUMO

The development of inert, biocompatible chelation methods is required to harness the emerging positron emitting radionuclide 45Ti for radiopharmaceutical applications. Herein, we evaluate the Ti(IV)-coordination chemistry of four catechol-based, hexacoordinate chelators using synthetic, structural, computational, and radiochemical approaches. The siderophore enterobactin (Ent) and its synthetic mimic TREN-CAM readily form mononuclear Ti(IV) species in aqueous solution at neutral pH. Radiolabeling studies reveal that Ent and TREN-CAM form mononuclear complexes with the short-lived, positron-emitting radionuclide 45Ti(IV), and do not transchelate to plasma proteins in vitro and exhibit rapid renal clearance in naïve mice. These features guide efforts to target the 45Ti isotope to prostate cancer tissue through the design, synthesis, and evaluation of Ent-DUPA, a small molecule conjugate composed of a prostate specific membrane antigen (PSMA) targeting peptide and a monofunctionalized Ent scaffold. The [45Ti][Ti(Ent-DUPA)]2- complex forms readily at room temperature. In a tumor xenograft model in mice, selective tumor tissue accumulation (8±5 %, n=5), and low off-target uptake in other organs is observed. Overall, this work demonstrates targeted imaging with 45Ti(IV), provides a foundation for advancing the application of 45Ti in nuclear medicine, and reveals that Ent can be repurposed as a 45Ti-complexing cargo for targeted nuclear imaging applications.


Assuntos
Neoplasias da Próstata , Sideróforos , Humanos , Masculino , Animais , Camundongos , Sideróforos/química , Enterobactina/metabolismo , Titânio/química , Uso Off-Label , Neoplasias da Próstata/metabolismo , Radioisótopos
4.
Bioconjug Chem ; 35(3): 412-418, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38411531

RESUMO

Cobalt-sarcophagine complexes exhibit high kinetic inertness under various stringent conditions, but there is limited literature on radiolabeling and in vivo positron emission tomography (PET) imaging using no carrier added 55Co. To fill this gap, this study first investigates the radiolabeling of DiAmSar (DSar) with 55Co, followed by stability evaluation in human serum and EDTA, pharmacokinetics in mice, and a direct comparison with [55Co]CoCl2 to assess differences in pharmacokinetics. Furthermore, the radiolabeling process was successfully used to generate the NTSR1-targeted PET agent [55Co]Co-NT-Sarcage (a DSar-functionalized SR142948 derivative) and administered to HT29 tumor xenografted mice. The [55Co]Co-DSar complex can be formed at 37 °C with purity and stability suitable for preclinical in vivo radiopharmaceutical applications, and [55Co]Co-NT-Sarcage demonstrated prominent tumor uptake with a low background signal. In a direct comparison with [64Cu]Cu-NT-Sarcage, [55Co]Co-NT-Sarcage achieved a higher tumor-to-liver ratio but with overall similar biodistribution profile. These results demonstrate that Sar would be a promising chelator for constructing Co-based radiopharmaceuticals including 55Co for PET and 58mCo for therapeutic applications.


Assuntos
Radioisótopos de Cobalto , Ciclotrons , Neoplasias , Humanos , Animais , Camundongos , Distribuição Tecidual , Xenoenxertos , Radioisótopos de Cobre/farmacocinética , Tomografia por Emissão de Pósitrons/métodos , Compostos Radiofarmacêuticos/farmacocinética , Linhagem Celular Tumoral
5.
Adv Funct Mater ; 33(33)2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37942189

RESUMO

The therapeutic efficacy of photodynamic therapy is limited by the ability of light to penetrate tissues. Due to this limitation, Cerenkov luminescence (CL) from radionuclides has recently been proposed as an alternative light source in a strategy referred to as Cerenkov radiation induced therapy (CRIT). Semiconducting polymer nanoparticles (SPNs) have ideal optical properties, such as large absorption cross-sections and broad absorbance, which can be utilized to harness the relatively weak CL produced by radionuclides. SPNs can be doped with photosensitizers and have nearly 100% energy transfer efficiency by multiple energy transfer mechanisms. Herein, we investigated an optimized photosensitizer doped SPN as a nanosystem to harness and amplify CL for cancer theranostics. We found that semiconducting polymers significantly amplified CL energy transfer efficiency. Bimodal PET and optical imaging studies showed high tumor uptake and retention of the optimized SPNs when administered intravenously or intratumorally. Lastly, we found that photosensitizer doped SPNs have excellent potential as a cancer theranostics nanosystem in an in vivo tumor therapy study. Our study shows that SPNs are ideally suited to harness and amplify CL for cancer theranostics, which may provide a significant advancement for CRIT that are unabated by tissue penetration limits.

6.
Appl Radiat Isot ; 200: 110980, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37591186

RESUMO

Cobalt-55 and -58m form a theranostic pair that has relevant properties for cancer research. We report a cation exchange chromatography/extraction chromatography method that separates cyclotron-produced 55/58mCo from 54/57Fe in <1.5 h, recovers >85% Co and achieves [55Co]Co-NOTA and -DOTA AMA 89 ± 48 and 35 ± 7 MBq/nmol (EOB), respectively. Cobalt-55 and -58m were quantitatively labeled to functionalized NOTA at 106 and 50 MBq/nmol (EOB), respectively, corroborating measured AMA. This method is faster than previously published methods and achieves better [55/58mCo]Co-NOTA and -DOTA AMA.

7.
Appl Radiat Isot ; 200: 110924, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37423061

RESUMO

52gMn is a promising radionuclide for positron emission tomography (PET). Enriched 52Cr targets are required to minimize formation of 54Mn radioisotopic impurities during production with proton beams. The need for radioisotopically pure 52gMn, accessibility and cost of 52Cr, sustainability of the radiochemical process, and potential for iterative purification of target materials motivate this development of recyclable, electroplated 52Cr metal targets and radiochemical isolation and labeling with resulting >99.89% radionuclidically pure 52gMn. The run-to-run replating efficiency is 60 ± 20%, and unplated chromium from this method is recovered with 94% efficiency as 52CrCl3 hexahydrate. The decay-corrected molar activity of chemically isolated 52gMn for common chelating ligands was 376 MBq/µmol.

8.
Inorg Chem ; 62(50): 20655-20665, 2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-37523384

RESUMO

The solution chemistry of the hydrolytic, early-transition-metal ions Ti4+ and Sc3+ represents a coordination chemistry challenge with important real-world implications, specifically in the context of 44Ti/44Sc and 45Ti/NatSc radiochemical separations. Unclear speciation of the solid and solution phases and tertiary mixtures of mineral acid, organic chelators, and solid supports are common confounds, necessitating tedious screening of multiple variables. Herein we describe how thermodynamic speciation data in solution informs the design of new solid-phase chelation approaches enabling separations of Ti4+ and Sc3+. The ligands catechol (benzene-1,2-diol) and deferiprone [3-hydroxy-1,2-dimethyl-4(1H)-pyridone] bind Ti4+ at significantly more acidic conditions (2-4 pH units) than Sc3+. Four chelating resins were synthesized using either catechol or deferiprone with two different solid supports. Of these, deferiprone appended to carboxylic acid polymer-functionalized silica (CA-Def) resin exhibited excellent binding affinity for Ti4+ across a wide range of HCl concentrations (1.0-0.001 M), whereas Sc3+ was only retained in dilute acidic conditions (0.01-0.001 M HCl). CA-Def resin produced separation factors of >100 (Ti/Sc) in 0.1-0.4 M HCl, and the corresponding Kd values (>1000) show strong retention of Ti4+. A model 44Ti/44Sc generator was produced, showing 65 ± 3% yield of 44Sc in 200 µL of 0.2 M HCl with a significant 44Ti breakthrough of 0.1%, precluding use in its current form. Attempts, however, removed natSc in loading fractions and a dilute (0.4 M HCl) wash and recovered 80% of the loaded 45Ti activity in 400 µL of 6 M HCl. The previously validated 45Ti chelator TREN-CAM was used for comparative proof-of-concept reactions with the CA-Def eluent (in HCl) and literature-reported hydroxamate-based resin eluents (in citric acid). CA-Def shows improved radiolabeling efficiency with an apparent molar activity (AMA) of 0.177 mCi nmol-1, exceeding the established methods (0.026 mCi nmol-1) and improving the separation and recovery of 45Ti for positron emission tomography imaging applications.

9.
Nucl Med Biol ; 122-123: 108352, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37390607

RESUMO

Targeted Meitner-Auger Therapy (TMAT) has potential for personalized treatment thanks to its subcellular dosimetric selectivity, which is distinct from the dosimetry of ß- and α particle emission based Targeted Radionuclide Therapy (TRT). To date, most clinical and preclinical TMAT studies have used commercially available radionuclides. These studies showed promising results despite using radionuclides with theoretically suboptimal photon to electron ratios, decay kinetics, and electron emission spectra. Studies using radionuclides whose decay characteristics are considered more optimal are therefore important for evaluation of the full potential of Meitner-Auger therapy; 119Sb is among the best such candidates. In the present work, we develop radiochemical purification of 120Sb from irradiated natural tin targets for TMAT studies with 119Sb.


Assuntos
Antimônio , Elétrons , Antimônio/uso terapêutico , Radioquímica , Radioisótopos/uso terapêutico , Compostos Radiofarmacêuticos/uso terapêutico
10.
Front Chem ; 11: 1167783, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37179772

RESUMO

Introduction: 43Sc and 44gSc are both positron-emitting radioisotopes of scandium with suitable half-lives and favorable positron energies for clinical positron emission tomography (PET) imaging. Irradiation of isotopically enriched calcium targets has higher cross sections compared to titanium targets and higher radionuclidic purity and cross sections than natural calcium targets for reaction routes possible on small cyclotrons capable of accelerating protons and deuterons. Methods: In this work, we investigate the following production routes via proton and deuteron bombardment on CaCO3 and CaO target materials: 42Ca(d,n)43Sc, 43Ca(p,n)43Sc, 43Ca(d,n)44gSc, 44Ca(p,n)44gSc, and 44Ca(p,2n)43Sc. Radiochemical isolation of the produced radioscandium was performed with extraction chromatography using branched DGA resin and apparent molar activity was measured with the chelator DOTA. The imaging performance of 43Sc and 44gSc was compared with 18F, 68Ga, and 64Cu on two clinical PET/CT scanners. Discussion: The results of this work demonstrate that proton and deuteron bombardment of isotopically enriched CaO targets produce high yield and high radionuclidic purity 43Sc and 44gSc. Laboratory capabilities, circumstances, and budgets are likely to dictate which reaction route and radioisotope of scandium is chosen.

11.
J Org Chem ; 88(4): 2089-2094, 2023 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-36745853

RESUMO

A copper-mediated radiobromination of (hetero)aryl boronic pinacol esters is described. Cyclotron-produced [76/77Br]bromide was isolated using an anion exchange cartridge, wherein the pre-equilibration and elution solutions played a critical role in downstream deboro-bromination. The bromination tolerates a broad range of functional groups, labeling molecules with ranging electronic and steric effects. Bologically active radiopharmaceuticals were synthesized, including two radiobrominated inhibitors of poly ADP ribose polymerase, a clinically relevant chemotherapeutic target for ovarian, breast, and prostate cancers.


Assuntos
Cobre , Ésteres , Boro , Glicóis
12.
Nucl Med Biol ; 118-119: 108329, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36805869

RESUMO

Neurotensin receptor 1 (NTSR1) can stimulate tumor proliferation through neurotensin (NTS) activation and are overexpressed by a variety of cancers. The high binding affinity of NTS/NTSR1 makes radiolabeled NTS derivatives interesting for cancer diagnosis and staging. Internalization of NTS/NTSR1 also suggests therapeutic application with high LET alpha particles and low energy electrons. We investigated the therapeutic efficacy of [58mCo]Co-NOTA-NT-20.3 in vivo using murine models xenografted with NTSR1-positive HT29 human colorectal adenocarcinoma cells, and utilized [55Co]Co-NOTA-NT-20.3 for dosimetry. METHODS: Targeting properties and cytotoxicity of [55/58mCo]Co-NOTA-NT-20.3 were assessed with HT29 cells. Female nude mice were xenografted with HT29 tumors and administered [55Co or 58mCo]Co-NOTA-NT-20.3 to evaluate pharmacokinetics or for therapy, respectively. Dosimetry calculations followed the Medical Internal Radiation Dose (MIRD) formalism and human absorbed dose rate per unit activity were obtained from OpenDose. The pilot therapy study consisted of two groups (each N = 3) receiving 110 ± 15 MBq and 26 ± 6 MBq [58mCo]Co-NOTA-NT-20.3 one week after tumor inoculation, and control (N = 3). Tumor sizes and masses were measured twice a week after therapy. Complete blood count and kidney histology were also performed to assess toxicity. RESULTS: HPLC measured radiochemical purity of [55,58mCo]Co-NOTA-NT-20.3 > 99 %. Labeled compounds retained NTS targeting properties. [58mCo]Co-NOTA-NT-20.3 exhibited cytotoxicity for HT29 cells and was >15× more potent than [58mCo]CoCl2. Xenografted tumors responded modestly to administered doses, but mice showed no signs of radiotoxicity. Absorbed dose to tumor and kidney with 110 MBq [58mCo]Co-NOTA-NT-20.3 were 0.6 Gy and 0.8 Gy, respectively, and other organs received less than half of the absorbed dose to tumor. Off-target radiation dose from cobalt-58g was small but reduces the therapeutic window. CONCLUSION: The enhanced in vitro cytotoxicity and high tumor-to-background led us to investigate the therapeutic efficacy of [58mCo]Co-NOTA-NT-20.3 in vivo. Although we were unable to induce tumor response commensurate with [177Lu]Lu-NT127 (NLys-Lys-Pro-Tyr-Tle-Leu) studies involving similar time-integrated activity, the absence of observed toxicity may constitute an opportunity for targeting vectors with improved uptake and/or retention to avoid the aftereffects of other high-LET radioactive emissions. Future studies with higher uptake, activity and/or multiple dosing regimens are warranted. The theranostic approach employed in this work was crucial for dosimetry analysis.


Assuntos
Medicina de Precisão , Receptores de Neurotensina , Feminino , Camundongos , Humanos , Animais , Receptores de Neurotensina/metabolismo , Projetos Piloto , Camundongos Nus , Neurotensina/uso terapêutico , Neurotensina/metabolismo
13.
Bioact Mater ; 19: 282-291, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35574055

RESUMO

Acute kidney injury (AKI) leads to unacceptably high mortality due to difficulties in timely intervention and less efficient renal delivery of therapeutic drugs. Here, a series of polyvinylpyrrolidone (PVP)-curcumin nanoparticles (PCurNP) are designed to meet the renal excretion threshold (∼45 kDa), presenting a controllable delivery nanosystem for kidney targeting. Renal accumulation of the relatively small nanoparticles, 89Zr-PCurNP M10 with the diameter between 5 and 8 nm, is found to be 1.7 times and 1.8 times higher than the accumulation of 89Zr-PCurNP M29 (20-50 nm) and M40 (20-50 nm) as revealed by PET imaging. Furthermore, serum creatinine analysis, kidney tissues histology, and tubular injury scores revealed that PCurNP M10 efficiently treated cisplatin-induced AKI. Herein, PCurNP offers a novel and simple strategy for precise PET image-guided drug delivery of renal protective materials.

14.
Nucl Phys A ; 10212022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35967889

RESUMO

Excitation function of the 54Fe(p,α)51Mn reaction was measured from 9.5 to 18 MeV E 0 , p + by activating a foil stack of 54Fe electrodeposited on copper substrates. Residual radionuclides were quantified by HPGe gamma ray spectrometry. Both 51Mn (t 1/2 = 46.2 min, 〈 E ß + 〉 = 963.7 keV , I ß + = 97 % ; E γ = 749.1 keV, I γ = 0.265%) and its radioactive daughter, 51Cr (t 1/2 = 27.704d, E γ = 320.1 keV, I γ = 9.91%), were used to indirectly quantify formation of 51Mn. Results agree within uncertainty to the only other measurement in literature and predictions of default TALYS theoretical code. Final relative uncertainties are within ±12%.

15.
Adv Mater ; 34(39): e2204976, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35973230

RESUMO

During cerebral ischemia-reperfusion (I-R) injury, the infiltration of monocyte/macrophages (Mo /Mφ ) into the ischemic penumbra causes inflammatory damage but also regulates tissue repair in the penumbra. The regulation and balance of Mo /Mφ polarization is considered as a potential therapeutic target for treating cerebral I-R injury. Herein, these findings demonstrate that glabridin (Gla)-loaded nanoparticles (i.e., NPGla -5k) can effectively inhibit M1-polarization and enhance M2-polarization of Mo /Mφ . Positron emission tomography (PET) imaging shows that NPGla -5k can selectively accumulate in the spleen following intravenous injection. Spleen-targeted Cy5-NPGla -5k can co-localize with peripheral macrophages in the penumbra at 24 h after tail-vein injection. Interestingly, NPGla -5k treatment can reduce inflammatory damage, protect dying neurons, and improve nervous system function. The protective effect of spleen-targeted NPGla -5k against cerebral I-R injury in mice encourages an exploration of their use for clinical treatment of patients with cerebral I-R injury.


Assuntos
Nanopartículas , Traumatismo por Reperfusão , Animais , Isoflavonas , Macrófagos , Camundongos , Monócitos , Fenóis , Traumatismo por Reperfusão/tratamento farmacológico , Baço
16.
Eur J Nucl Med Mol Imaging ; 49(3): 861-870, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34519889

RESUMO

PURPOSE: Without a standard test for pancreatic carcinomas, this highly lethal disease is normally diagnosed at its advanced stage, leading to a low survival rate of patients. Trophoblast cell-surface antigen 2 (Trop-2), a transmembrane glycoprotein, is associated with cell proliferation and highly expressed in most of solid epithelial tumors, including pancreatic cancer. A non-invasive method of imaging Trop-2 would greatly benefit clinical diagnosis and monitoring of pancreatic cancer. In the current study, 89Zr-labeled anti-Trop-2 antibody (AF650) was recruited for the systemic evaluation of Trop-2 as an immunoPET target for pancreatic cancer imaging. METHODS: AF650 was conjugated with desferrioxamine (DFO) and then radiolabeled with 89Zr. Trop-2 expression levels were determined in three pancreatic cancer cell lines (BxPC-3, MIA PaCa-2, and AsPC-1) via western blot, flow cytometry, saturation binding assay, and immunofluorescence staining. The targeting capacity of 89Zr-DFO-AF650 was evaluated in mouse models with subcutaneous xenograft of pancreatic cancers via PET imaging and bio-distribution studies. In addition, a Trop-2-positive orthotopic cancer model was recruited for further validating the targeting specificity of 89Zr-DFO-AF650. RESULTS: BxPC-3 cells expressed high levels of Trop-2, while AsPC-1 and MIA PaCa-2 cells expressed low levels of Trop-2. Additionally, 89Zr-DFO-AF650 exhibited high specificity to Trop-2 in BxPC-3 cells (Kd = 22.34 ± 2.509 nM). In subcutaneous xenograft models, about 28.8 ± 7.63%ID/g tracer accumulated in the BxPC-3 tumors at 120 h post injection, which was much higher than those reaching MIA PaCa-2 (6.76 ± 2.08%ID/g) and AsPC-1 (3.51 ± 0.69%ID/g) tumors (n = 4). More importantly, 89Zr-DFO-AF650 could efficiently distinguish primary tumors in the orthotopic BxPC-3 cancer model, showing high correlation between PET imaging and bio-distribution and sensitivity. CONCLUSIONS: 89Zr-DFO-AF650 can be effectively used to detect pancreatic cancer via Trop-2-mediated immunoPET in vivo, clearly revealing the great potential of Trop-2-based non-invasive imaging in pancreatic cancer detection and treatment monitoring.


Assuntos
Neoplasias Pancreáticas , Trofoblastos , Animais , Antígenos de Superfície , Linhagem Celular Tumoral , Humanos , Camundongos , Camundongos Nus , Neoplasias Pancreáticas/metabolismo , Tomografia por Emissão de Pósitrons/métodos , Trofoblastos/metabolismo , Trofoblastos/patologia , Zircônio
17.
Molecules ; 26(24)2021 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-34946596

RESUMO

Background: Radionuclides emitting Auger electrons (AEs) with low (0.02-50 keV) energy, short (0.0007-40 µm) range, and high (1-10 keV/µm) linear energy transfer may have an important role in the targeted radionuclide therapy of metastatic and disseminated disease. Erbium-165 is a pure AE-emitting radionuclide that is chemically matched to clinical therapeutic radionuclide 177Lu, making it a useful tool for fundamental studies on the biological effects of AEs. This work develops new biomedical cyclotron irradiation and radiochemical isolation methods to produce 165Er suitable for targeted radionuclide therapeutic studies and characterizes a new such agent targeting prostate-specific membrane antigen. Methods: Biomedical cyclotrons proton-irradiated spot-welded Ho(m) targets to produce 165Er, which was isolated via cation exchange chromatography (AG 50W-X8, 200-400 mesh, 20 mL) using alpha-hydroxyisobutyrate (70 mM, pH 4.7) followed by LN2 (20-50 µm, 1.3 mL) and bDGA (50-100 µm, 0.2 mL) extraction chromatography. The purified 165Er was radiolabeled with standard radiometal chelators and used to produce and characterize a new AE-emitting radiopharmaceutical, [165Er]PSMA-617. Results: Irradiation of 80-180 mg natHo targets with 40 µA of 11-12.5 MeV protons produced 165Er at 20-30 MBq·µA-1·h-1. The 4.9 ± 0.7 h radiochemical isolation yielded 165Er in 0.01 M HCl (400 µL) with decay-corrected (DC) yield of 64 ± 2% and a Ho/165Er separation factor of (2.8 ± 1.1) · 105. Radiolabeling experiments synthesized [165Er]PSMA-617 at DC molar activities of 37-130 GBq·µmol-1. Conclusions: A 2 h biomedical cyclotron irradiation and 5 h radiochemical separation produced GBq-scale 165Er suitable for producing radiopharmaceuticals at molar activities satisfactory for investigations of targeted radionuclide therapeutics. This will enable fundamental radiation biology experiments of pure AE-emitting therapeutic radiopharmaceuticals such as [165Er]PSMA-617, which will be used to understand the impact of AEs in PSMA-targeted radionuclide therapy of prostate cancer.


Assuntos
Dipeptídeos/química , Érbio/química , Compostos Heterocíclicos com 1 Anel/química , Antígeno Prostático Específico/química , Neoplasias da Próstata/radioterapia , Radioisótopos/química , Compostos Radiofarmacêuticos/química , Humanos , Masculino
18.
Inorg Chem ; 60(20): 15223-15232, 2021 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-34606252

RESUMO

The therapeutic potential of the Meitner-Auger- and conversion-electron emitting radionuclide 119Sb remains unexplored because of the difficulty of incorporating it into biologically targeted compounds. To address this challenge, we report the development of 119Sb production from electroplated tin cyclotron targets and its complexation by a novel trithiol chelate. The chelation reaction occurs in harsh solvent conditions even in the presence of large quantities of tin, which are necessary for production on small, low energy (16 MeV) cyclotrons. The 119Sb-trithiol complex has high stability and can be purified by HPLC. The third generation trithiol chelate and the analogous stable natSb-trithiol compound were synthesized and characterized, including by single-crystal X-ray diffraction analyses.

19.
Appl Radiat Isot ; 178: 109954, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34607293

RESUMO

[11C]ER176 is a next generation PET radioligand for imaging 18 kDa translocator protein, a biomarker for neuroinflammation. The goal of this work was to investigate alternative strategies for the radiochemical synthesis, purification, and formulation of [11C]ER176. An optimized tri-solvent high-performance liquid chromatography (HPLC) protocol is described to separate the hydro-de-chlorinated byproduct from [11C]ER176. A newly implemented solid phase extraction work-up efficiently removed HPLC solvent while maintaining chemical purity and overall radiochemical yield and purity. This new HPLC purification and final formulation was completed within 40 min, providing 2.7 ± 0.5 GBq of [11C]ER176 at end of synthesis with 1400 ± 300 GBq/µmol molar activity while meeting all specifications for radiopharmaceutical quality control tests for human research use.


Assuntos
Radioisótopos de Carbono/química , Doenças Neuroinflamatórias/diagnóstico por imagem , Tomografia por Emissão de Pósitrons/métodos , Compostos Radiofarmacêuticos/síntese química , Cromatografia Líquida de Alta Pressão , Humanos , Controle de Qualidade , Compostos Radiofarmacêuticos/administração & dosagem , Extração em Fase Sólida , Espectrofotometria Ultravioleta
20.
J Am Chem Soc ; 143(27): 10429-10440, 2021 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-34190542

RESUMO

Nuclear medicine leverages different types of radiometals for disease diagnosis and treatment, but these applications usually require them to be stably chelated. Given the often-disparate chemical properties of these radionuclides, it is challenging to find a single chelator that binds all of them effectively. Toward addressing this problem, we recently reported a macrocyclic chelator macrodipa with an unprecedented "dual-size-selectivity" pattern for lanthanide (Ln3+) ions, characterized by its high affinity for both the large and the small Ln3+ ( J. Am. Chem. Soc, 2020, 142, 13500). Here, we describe a second-generation "macrodipa-type" ligand, py-macrodipa. Its coordination chemistry with Ln3+ was thoroughly investigated experimentally and computationally. These studies reveal that the Ln3+-py-macrodipa complexes exhibit enhanced thermodynamic and kinetic stabilities compared to Ln3+-macrodipa, while retaining the unusual dual-size selectivity. Nuclear medicine applications of py-macrodipa for chelating radiometals with disparate chemical properties were assessed using the therapeutic 135La3+ and diagnostic 44Sc3+ radiometals representing the two size extremes within the rare-earth series. Radiolabeling and stability studies demonstrate that the rapidly formed complexes of these radionuclides with py-macrodipa are highly stable in human serum. Thus, in contrast to gold standard chelators like DOTA and macropa, py-macrodipa can be harnessed for the simultaneous, efficient binding of radiometals with disparate ionic radii like La3+ and Sc3+, signifying a substantial achievement in nuclear medicine. This concept could enable the facile incorporation of a breadth of medicinally relevant radiometals into chemically identical radiopharmaceutical agents. The fundamental coordination chemistry learned from py-macrodipa provides valuable insight for future chelator development.


Assuntos
Quelantes/química , Elementos da Série dos Lantanídeos/química , Compostos Macrocíclicos/química , Piridinas/química , Sistemas de Liberação de Medicamentos , Desenho de Fármacos , Ligação de Hidrogênio , Modelos Moleculares , Estrutura Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...