Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Hum Neurosci ; 16: 814204, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35280208

RESUMO

Aging is associated with declines in sensorimotor function. Several studies have demonstrated that transcranial direct current stimulation (tDCS), a form of non-invasive brain stimulation, can be combined with training to mitigate age-related cognitive and motor declines. However, in some cases, the application of tDCS disrupts performance and learning. Here, we applied anodal tDCS either over the left prefrontal cortex (PFC), right PFC, supplementary motor complex (SMC), the left M1, or in a sham condition while older adults (n = 63) practiced a Discrete Sequence Production (DSP), an explicit motor sequence, task across 3 days. We hypothesized that stimulation to either the right or left PFC would enhance motor learning for older adults, based on the extensive literature showing increased prefrontal cortical activity during motor task performance in older adults. Contrary to our predictions, stimulation to the right and left PFC resulted in slowed motor learning, as evidenced by a slower reduction rate of reduction of reaction time and the number of sequence chunks across trials relative to sham in session one and session two, respectively. These findings suggest an integral role of the right PFC early in sequence learning and a role of the left PFC in chunking in older adults, and contribute to mounting evidence of the difficultly of using tDCS in an aging population.

2.
Front Hum Neurosci ; 14: 75, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32226370

RESUMO

Transcranial direct current stimulation (tDCS) over the primary motor cortex (M1) can facilitate motor learning, but it has not been established how stimulation to other brain regions impacts online and offline motor sequence learning, as well as long-term retention. Here, we completed three experiments comparing the effects of tDCS and sham stimulation to the prefrontal cortex (PFC), M1, and the supplementary motor area complex to understand the contributions of these brain regions to motor sequence learning. In Experiment 1, we found that both left and right PFC tDCS groups displayed a slowing in learning in both reaction time and number of chunks, whereas stimulation over M1 improved both metrics over the course of three sessions. To better understand the sequence learning impairment of left PFC anodal stimulation, we tested a left PFC cathodal tDCS group in Experiment 2. The cathodal group demonstrated learning impairments similar to the left PFC anodal stimulation group. In Experiment 3, a subset of participants from the left PFC, M1, and sham tDCS groups of Experiment 1 returned to complete a single session without tDCS on the same sequences assigned to them 1 year previously. We found that the M1 tDCS group reduced reaction time at a faster rate relative to the sham and left PFC groups, demonstrating faster relearning after a one-year delay. Thus, our findings suggest that, regardless of the polarity of stimulation, tDCS to PFC impairs sequence learning, whereas stimulation to M1 facilitates learning and relearning, especially in terms of chunk formation.

3.
J Mot Behav ; 51(5): 540-550, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30395789

RESUMO

Participants practiced a fixed 3- and a fixed 6-key press sequence for 144 times each. In the speed group, they were instructed to execute their sequences fast without bothering much about errors while the accurate group was instructed to be careful and prevent errors. In the test phase, participants executed series of 3 and 6 responses (a) when all element-specific stimuli were displayed in the familiar order, (b) in response to just the familiar first stimulus, and (c) by responding to random stimuli. The speed instruction yielded stronger sequencing skill while the accuracy instruction developed stronger reaction skill.


Assuntos
Aprendizagem/fisiologia , Prática Psicológica , Desempenho Psicomotor/fisiologia , Tempo de Reação/fisiologia , Adulto , Feminino , Humanos , Masculino , Adulto Jovem
4.
Front Psychol ; 7: 1125, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27602001

RESUMO

Older adults show reduced motor performance and changes in motor skill development. To better understand these changes, we studied differences in sequence knowledge representations between young and older adults using a transfer task. Transfer, or the ability to apply motor skills flexibly, is highly relevant in day-to-day motor activity and facilitates generalization of learning to new contexts. By using movement types that are completely unrelated in terms of muscle activation and response location, we focused on transfer facilitated by the early, visuospatial system. We tested 32 right-handed older adults (65-75) and 32 young adults (18-30). During practice of a discrete sequence production task, participants learned two six-element sequences using either unimanual key-presses (KPs) or by moving a lever with lower arm flexion-extension (FE) movements. Each sequence was performed 144 times. They then performed a test phase consisting of familiar and random sequences performed with the type of movements not used during practice. Both age groups displayed transfer from FE to KP movements as indicated by faster performance on the familiar sequences in the test phase. Only young adults transferred their sequence knowledge from KP to FE movements. In both directions, the young showed higher transfer than older adults. These results suggest that the older participants, like the young, represented their sequences in an abstract visuospatial manner. Transfer was asymmetric in both age groups: there was more transfer from FE to KP movements than vice versa. This similar asymmetry is a further indication that the types of representations that older adults develop are comparable to those that young adults develop. We furthermore found that older adults improved less during FE practice, gained less explicit knowledge, displayed a smaller visuospatial working memory capacity and had lower processing speed than young adults. Despite the many differences between young and older adults, the ability to apply sequence knowledge in a flexible way appears to be partly preserved in older adults.

5.
Behav Res Methods ; 47(4): 918-929, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25407763

RESUMO

Performing online behavioral research is gaining increased popularity among researchers in psychological and cognitive science. However, the currently available methods for conducting online reaction time experiments are often complicated and typically require advanced technical skills. In this article, we introduce the Qualtrics Reaction Time Engine (QRTEngine), an open-source JavaScript engine that can be embedded in the online survey development environment Qualtrics. The QRTEngine can be used to easily develop browser-based online reaction time experiments with accurate timing within current browser capabilities, and it requires only minimal programming skills. After introducing the QRTEngine, we briefly discuss how to create and distribute a Stroop task. Next, we describe a study in which we investigated the timing accuracy of the engine under different processor loads using external chronometry. Finally, we show that the QRTEngine can be used to reproduce classic behavioral effects in three reaction time paradigms: a Stroop task, an attentional blink task, and a masked-priming task. These findings demonstrate that QRTEngine can be used as a tool for conducting online behavioral research even when this requires accurate stimulus presentation times.


Assuntos
Pesquisa Comportamental/métodos , Internet , Tempo de Reação/fisiologia , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...