Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Sci (Weinh) ; : e2403831, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38976561

RESUMO

Targeted therapy remains the future of anti-cancer drug development, owing to the lack of specificity of current treatments which lead to damage in healthy normal tissues. ATR inhibitors have in recent times demonstrated promising clinical potential, and are currently being evaluated in the clinic. However, despite the considerable optimism for clinical success of these inhibitors, reports of associated normal tissues toxicities remain a concern and can compromise their utility. Here, ICT10336 is reported, a newly developed hypoxia-responsive prodrug of ATR inhibitor, AZD6738, which is hypoxia-activated and specifically releases AZD6738 only in hypoxic conditions, in vitro. This hypoxia-selective release of AZD6738 inhibited ATR activation (T1989 and S428 phosphorylation) and subsequently abrogated HIF1a-mediated adaptation of hypoxic cancers cells, thus selectively inducing cell death in 2D and 3D cancer models. Importantly, in normal tissues, ICT10336 is demonstrated to be metabolically stable and less toxic to normal cells than its active parent agent, AZD6738. In addition, ICT10336 exhibited a superior and efficient multicellular penetration ability in 3D tumor models, and selectively eradicated cells at the hypoxic core compared to AZD6738. In summary, the preclinical data demonstrate a new strategy of tumor-targeted delivery of ATR inhibitors with significant potential of enhancing the therapeutic index.

2.
Front Cell Dev Biol ; 12: 1359105, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38933336

RESUMO

Classically, ATM is known for its role in sensing double-strand DNA breaks, and subsequently signaling for their repair. Non-canonical roles of ATM include transcriptional silencing, ferroptosis, autophagy and angiogenesis. Angiogenesis mediated by ATM signaling has been shown to be VEGF-independent via p38 signaling. Independently, p38 signaling has been shown to upregulate metalloproteinase expression, including MMP-2 and MMP-9, though it is unclear if this is linked to ATM. Here, we demonstrate ATM regulates aminopeptidase-N (CD13/APN/ANPEP) at the protein level. Positive correlation was seen between ATM activity and CD13 protein expression using both "wildtype" (WT) and knockout (KO) ataxia telangiectasia (AT) cells through western blotting; with the same effect shown when treating neuroblastoma cancer cell line SH-SY5Y, as well as AT-WT cells, with ATM inhibitor (ATMi; KU55933). However, qPCR along with publically available RNAseq data from Hu et al. (J. Clin. Invest., 2021, 131, e139333), demonstrated no change in mRNA levels of CD13, suggesting that ATM regulates CD13 levels via controlling protein degradation. This is further supported by the observation that incubation with proteasome inhibitors led to restoration of CD13 protein levels in cells treated with ATMi. Migration assays showed ATM and CD13 inhibition impairs migration, with no additional effect observed when combined. This suggests an epistatic effect, and that both proteins may be acting in the same signaling pathway that influences cell migration. This work indicates a novel functional interaction between ATM and CD13, suggesting ATM may negatively regulate the degradation of CD13, and subsequently cell migration.

3.
iScience ; 26(11): 108219, 2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-37942010

RESUMO

Harnessing the differences between cancer and non-cancer tissues presents new opportunities for selective targeting by anti-cancer drugs. CD13, a heavily glycosylated protein, is one example with significant unmet clinical potential in cancer drug discovery. Despite its high expression and activity in cancers, CD13 is also expressed in many normal tissues. Here, we report differential tissue glycosylation of CD13 across tissues and demonstrate for the first time that the nature and pattern of glycosylation of CD13 in preclinical cancer tissues are distinct compared to normal tissues. We identify cancer-specific O-glycosylation of CD13, which selectively blocks its detection in cancer models but not in normal tissues. In addition, the metabolism activity of cancer-expressed CD13 was observed to be critically dependent on its unique glycosylation. Thus, our data demonstrate the existence of discrete cancer-specific CD13 glycoforms and propose cancer-specific CD13 glycoforms as a clinically useful target for effective cancer-targeted therapy.

4.
Biol Open ; 12(10)2023 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-37846765

RESUMO

The inaugural 'British Association of Cancer Research (BACR) Early Career Conference, Trailblazers in Cancer Research 2023', was a 2-day meeting held in Manchester, UK. Recognising the disruption caused by the COVID-19 pandemic to early-career researchers (ECRs), the BACR executive committee organised an in-person conference to address the lack of network and training opportunities during this time. The conference brought together PhD students and post-doctoral researchers from across the UK and beyond, who shared their outstanding contributions to cancer research. The meeting incorporated several cutting-edge cancer themes, including 'Cancer Cell Signalling and The Tumour Microenvironment'; 'Emerging Approaches in Cancer Treatment'; 'Cancer Omics and Lifestyle', and 'Nutrition and Cancer'. Alongside showcasing world-class cancer research, the meeting included a career-focused session which allowed industrial and non-academic speakers to provide vital insight into alternative career paths aside from the familiar 'academic' route. Importantly, the conference also introduced delegates to Patient Public Involvement in cancer research, an area of limited experience for many. Overall, the BACR Trailblazers Conference was hugely successful and presented an excellent platform for collaboration and networking among ECRs in cancer research.


Assuntos
COVID-19 , Neoplasias , Humanos , Pandemias , Pesquisadores , Neoplasias/etiologia
5.
J Org Chem ; 87(21): 14026-14036, 2022 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-36265181

RESUMO

Glycosylation of peptides and proteins is a widely employed strategy to mimic important post-translational modifications or to modulate the physicochemical properties of peptides to enhance their delivery. Furthermore, glycosylation via a sulfur atom imparts increased chemical and metabolic stability to the resulting glycoconjugates. Herein, we report a simple and chemoselective procedure to prepare disulfide-linked glycopeptides. Acetate-protected glycosylsulfenyl hydrazines are shown to be highly reactive with the thiol group of cysteine residues within peptides, both in solution and as part of conventional solid-phase peptide synthesis protocols. The efficiency of this glycosylation methodology with unprotected carbohydrates is also demonstrated, which avoids the need for deprotection steps and further extends its utility, with disulfide-linked glycopeptides produced in excellent yields. Given the importance of glycosylated peptides in structural glycobiology, pharmacology, and therapeutics, the methodology outlined provides easy access to disulfide-linked glycopeptides as molecules with multiple biological applications.


Assuntos
Glicopeptídeos , Técnicas de Síntese em Fase Sólida , Dissulfetos , Glicosilação , Peptídeos
6.
Biochem Pharmacol ; 201: 115095, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35598808

RESUMO

Despite significant preclinical promise as anticancer agents, vascular-disrupting agents have yet to fulfil their clinical potential due to systemic toxicities. ICT2588 is a tumour-selective MT1-MMP-targeted prodrug of azademethylcolchicine, ICT2552. We investigate activation of ICT2588 and subsequent release of ICT2552 in tumour cells, and examine its ability to induce G2/M cell cycle arrest. We also explore synergism between ICT2588 and ATR inhibition, since colchicine, in addition to its vascular-disrupting properties, is known to induce G2/M arrest, DNA damage, and trigger apoptosis. Several ATR inhibitors are currently undergoing clinical evaluation. The cellular activation of ICT2588 was observed to correlate with MT1-MMP expression, with selective release of ICT2552 not compromised by cellular uptake and prodrug activation mechanisms. ICT2588 induced G2/M arrest, and triggered apoptosis in MT1-MMP-expressing cells, but not in cells lacking MT1-MMP expression, while ICT2552 itself induced G2/M arrest and triggered apoptosis in both cell lines. Interestingly, we uncovered that the intracellular release and accumulation dynamics of ICT2552 subsequent to prodrug activation provided synergism with an ATR inhibitor in a way not observed with direct administration of ICT2552. These findings have important potential implications for clinical combinations of ICT2588 and DNA repair inhibitors.


Assuntos
Neoplasias , Pró-Fármacos , Apoptose , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Linhagem Celular Tumoral , Colchicina/farmacologia , Pontos de Checagem da Fase G2 do Ciclo Celular , Metaloproteinase 14 da Matriz/metabolismo , Neoplasias/tratamento farmacológico , Pró-Fármacos/farmacologia , Inibidores de Proteínas Quinases
7.
Artigo em Inglês | MEDLINE | ID: mdl-34909652

RESUMO

The DNA damage response (DDR) is now known to play an important role in both cancer development and its treatment. Targeting proteins such as ATR (Ataxia telangiectasia mutated and Rad3-related) kinase, a major regulator of DDR, has demonstrated significant therapeutic potential in cancer treatment, with ATR inhibitors having shown anti-tumour activity not just as monotherapies, but also in potentiating the effects of conventional chemotherapy, radiotherapy, and immunotherapy. This review focuses on the biology of ATR, its functional role in cancer development and treatment, and the rationale behind inhibition of this target as a therapeutic approach, including evaluation of the progress and current status of development of potent and specific ATR inhibitors that have emerged in recent decades. The current applications of these inhibitors both in preclinical and clinical studies either as single agents or in combinations with chemotherapy, radiotherapy and immunotherapy are also extensively discussed. This review concludes with some insights into the various concerns raised or observed with ATR inhibition in both the preclinical and clinical settings, with some suggested solutions.

8.
Biochim Biophys Acta Rev Cancer ; 1876(2): 188641, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34695533

RESUMO

Aminopeptidase N (APN/CD13) is a multifunctional glycoprotein that acts as a peptidase, receptor, and signalling molecule in a tissue-dependent manner. The activities of APN have been implicated in the progression of many cancers, pointing toward significant therapeutic potential for cancer treatment. However, despite the tumour-specific functions of this protein that have been uncovered, the ubiquitous nature of its expression in normal tissues as generally reported remains a limitation to the potential utility of APN as a target for cancer therapeutics and drug discovery. With this in mind, we have extensively explored the literature, and present a comprehensive review that for the first-time provides evidence to support the suggestion that tumour-expressed APN may in fact be unique in structure, function, substrate specificity and activity, contrary to its nature in normal tissues. The review also focuses on the biology of APN, and its "moonlighting" functional roles in both normal physiology and cancer development. Several APN-targeting approaches that have been explored over recent decades as therapeutic strategies in cancer treatment, including APN-targeting agents reported both in preclinical and clinical studies, are also extensively discussed. This review concludes by posing critical questions about APN that remain unanswered and unexplored, hence providing opportunities for further research.


Assuntos
Antígenos CD13/metabolismo , Neoplasias/fisiopatologia , Peptídeo Hidrolases/metabolismo , Humanos
9.
Bioorg Med Chem ; 40: 116167, 2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-33932713

RESUMO

The duocarmycins belong to a class of agent which has great potential for use in cancer therapy. Their exquisite potency means they are too toxic for systemic use, and targeted approaches are required to unlock their clinical potential. In this study, we have explored seco-OH-chloromethylindoline (CI) duocarmycin-based bioprecursors for their potential for cytochrome P450 (CYP)-mediated cancer cell kill. We report on synthetic and biological explorations of racemic seco-CI-MI, where MI is a 5-methoxy indole motif, and dehydroxylated analogues. We show up to a 10-fold bioactivation of de-OH CI-MI and a fluoro bioprecursor analogue in CYP1A1-transfected cells. Using CYP bactosomes, we also demonstrate that CYP1A2 but not CYP1B1 or CYP3A4 has propensity for potentiating these compounds, indicating preference for CYP1A bioactivation.


Assuntos
Antineoplásicos/farmacologia , Inibidores das Enzimas do Citocromo P-450/farmacologia , Sistema Enzimático do Citocromo P-450/metabolismo , Duocarmicinas/farmacologia , Indóis/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Inibidores das Enzimas do Citocromo P-450/síntese química , Inibidores das Enzimas do Citocromo P-450/química , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Duocarmicinas/síntese química , Duocarmicinas/química , Humanos , Indóis/síntese química , Indóis/química , Estrutura Molecular , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...