Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Science ; 321(5885): 77-9, 2008 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-18599773

RESUMO

A 3200-kilometers-long profile of Mercury by the Mercury Laser Altimeter on the MESSENGER spacecraft spans approximately 20% of the near-equatorial region of the planet. Topography along the profile is characterized by a 5.2-kilometer dynamic range and 930-meter root-mean-square roughness. At long wavelengths, topography slopes eastward by 0.02 degrees , implying a variation of equatorial shape that is at least partially compensated. Sampled craters on Mercury are shallower than their counterparts on the Moon, at least in part the result of Mercury's higher gravity. Crater floors vary in roughness and slope, implying complex modification over a range of length scales.

2.
Science ; 316(5827): 1011-4, 2007 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-17446355

RESUMO

High-resolution images of the surface of asteroid Itokawa from the Hayabusa mission reveal it to be covered with unconsolidated millimeter-sized and larger gravels. Locations and morphologic characteristics of this gravel indicate that Itokawa has experienced considerable vibrations, which have triggered global-scale granular processes in its dry, vacuum, microgravity environment. These processes likely include granular convection, landslide-like granular migrations, and particle sorting, resulting in the segregation of the fine gravels into areas of potential lows. Granular processes become major resurfacing processes because of Itokawa's small size, implying that they can occur on other small asteroids should those have regolith.

3.
Nature ; 443(7107): 56-8, 2006 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-16957724

RESUMO

Puzzlingly, the parent bodies of ordinary chondrites (the most abundant type of meteorites) do not seem to be abundant among asteroids. One possible explanation is that surfaces of the parent bodies become optically altered, to become the S-type asteroids which are abundant in the main asteroid belt. The process is called 'space weathering'-it makes the visible and near-infrared reflectance spectrum of a body darker and redder. A recent survey of small, near-Earth asteroids suggests that the surfaces of small S asteroids may have developing stages of space weathering. Here we report that a dark region on a small (550-metre) asteroid-25143 Itokawa-is significantly more space-weathered than a nearby bright region. Spectra of both regions are consistent with those of LL5-6 chondrites after continuum removal. A simple calculation suggests that the dark area has a shorter mean optical path length and about 0.04 per cent by volume more nanophase metallic iron particles than the bright area. This clearly shows that space-weathered materials accumulate on small asteroids, which are likely to be the parent bodies of LL chondrites. We conclude that, because LL meteorites are the least abundant of ordinary (H, L, and LL) chondrites, there must be many asteroids with ordinary-chondrite compositions in near-Earth orbits.

4.
Science ; 312(5778): 1344-7, 2006 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-16741111

RESUMO

The ranging instrument aboard the Hayabusa spacecraft measured the surface topography of asteroid 25143 Itokawa and its mass. A typical rough area is similar in roughness to debris located on the interior wall of a large crater on asteroid 433 Eros, which suggests a surface structure on Itokawa similar to crater ejecta on Eros. The mass of Itokawa was estimated as (3.58 +/- 0.18) x 10(10) kilograms, implying a bulk density of (1.95 +/- 0.14) grams per cubic centimeter for a volume of (1.84 +/- 0.09) x 10(7) cubic meters and a bulk porosity of approximately 40%, which is similar to that of angular sands, when assuming an LL (low iron chondritic) meteorite composition. Combined with surface observations, these data indicate that Itokawa is the first subkilometer-sized small asteroid showing a rubble-pile body rather than a solid monolithic asteroid.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...