Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mater Sci Eng C Mater Biol Appl ; 117: 111342, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32919689

RESUMO

In order to overcome the poor adhesion of zirconia-silica coating electrophoretically deposited on 316 L stainless steel, graphene oxide (GO) was used as an interlayer. The effect of this interlayer on morphological, microstructural, corrosion performance and bioactivity behavior of ZrO2-10 at. % SiO2 coating was studied. The zirconia-silica coating with the GO interlayer revealed a higher barrier performance as a more compact and a greater adhesive layer to the substrate was created. Indeed, the GO interlayer led to an improvement in apatite formation on zirconia-silica coating surface probably due to create higher roughness. Briefly, the GO interlayer was effective on enhancement of electrochemical performance and biological property of zirconia-silica composite coating, making it a suitable candidate for biomaterials applications.


Assuntos
Dióxido de Silício , Aço Inoxidável , Materiais Revestidos Biocompatíveis , Corrosão , Grafite , Propriedades de Superfície
2.
Philos Trans A Math Phys Eng Sci ; 375(2098)2017 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-28607189

RESUMO

Hydrogen (H) enhanced cracking was studied in Fe-3wt%Si by means of in situ electrochemical microcantilever bending test. It was clearly shown that the presence of H causes hydrogen embrittlement (HE) by triggering crack initiation and propagation at the notch where stress concentration is existing. Additionally, the effect of carbon content and the presence of a grain boundary (GB) in the cantilever were studied. It was shown that in the presence of H the effect of carbon atom on pinning the dislocations is reduced. On the other hand, the presence of a GB, while the chemical composition of material kept constant, will promote the HE. Crack initiation and propagation occur in the presence of H, while the notch blunting was observed for both single and bi-crystalline beams bent in air. Post-mortem analysis of the crack propagation path showed that a transition from transgranular fracture to intragranular fracture mechanism is highly dependent on the position of the stress concentration relative to the GB.This article is part of the themed issue 'The challenges of hydrogen and metals'.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...