Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Toxics ; 12(4)2024 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-38668461

RESUMO

The environmental load by isoxaflutole and its formulated herbicide products has increasingly become apparent because, after the ban of atrazine, isoxaflutole has become its replacement active ingredient (a.i.). Obtaining information regarding the fate of this a.i. in environmental matrices and its ecotoxicological effects on aquatic organisms is essential for the risk assessment of the herbicide. In this study, the effects of Merlin Flexx- and Merlin WG75 formulated isoxaflutole-based herbicide products and two selected additives (cyprosulfamide safener and 1,2-benzisothiazol-3(2H)-one antimicrobial agent) were investigated on Raphidocelis subcapitata in growth inhibition assays. In ecotoxicological tests, two conventional (optical density and chlorophyll-a content) and two induced fluorescence-based (Fv*/Fp: efficiency of the photosystem PSII and Rfd* changes in the observed ratio of fluorescence decrease) endpoints were determined by UV-spectrophotometer and by our FluoroMeter Module, respectively. Furthermore, dissipation of isoxaflutole alone and in its formulated products was examined by an HPLC-UV method. In ecotoxicological assays, the fluorescence-based Rfd* was observed as the most sensitive endpoint. In this study, the effects of the safener cyprosulfamide and the antimicrobial agent 1,2-benzisothiazol-3(2H)-one on R. subcapitata is firstly reported. The results indicated that the isoxaflutole-equivalent toxicity of the mixture of the isoxaflutole-safener-antimicrobial agent triggered lower toxicity (EC50 = 2.81 ± 0.22 mg/L) compared to the individual effect of the a.i. (EC50 = 0.02 ± 0.00 mg/L). The Merlin Flexx formulation (EC50 = 27.04 ± 1.41 mg/L) was found to be approximately 50-fold less toxic than Merlin WG75, which can be explained by the different chemical characteristics and quantity of additives in them. The additives influenced the dissipation of the a.i. in Z8 medium, as the DT50 value decreased by approximately 1.2- and 3.5-fold under light and dark conditions, respectively.

2.
Toxics ; 12(4)2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38668480

RESUMO

The occurrence of the market-leading glyphosate active ingredient in surface waters is a globally observed phenomenon. Although co-formulants in pesticide formulations were considered inactive components from the aspects of the required main biological effect of the pesticide, several studies have proven the high individual toxicity of formulating agents, as well as the enhanced combined toxicity of the active ingredients and other components. Since the majority of active ingredients are present in the form of chemical mixtures in our environment, the possible combined toxicity between active ingredients and co-formulants is particularly important. To assess the individual and combined phytotoxicity of the components, glyphosate was tested in the form of pure active ingredient (glyphosate isopropylammonium salt) and herbicide formulations (Roundup Classic and Medallon Premium) formulated with a mixture of polyethoxylated tallow amines (POEA) or alkyl polyglucosides (APG), respectively. The order of acute toxicity was as follows for Roundup Classic: glyphosate < herbicide formulation < POEA. However, the following order was demonstrated for Medallon Premium: herbicide formulation < glyphosate < APG. Increased photosynthetic activity was detected after the exposure to the formulation (1.5-5.8 mg glyphosate/L and 0.5-2.2 mg POEA/L) and its components individually (glyphosate: 13-27.2 mg/L, POEA: 0.6-4.8 mg/L), which indicates hormetic effects. However, decreased photosynthetic activity was detected at higher concentrations of POEA (19.2 mg/L) and Roundup Classic (11.6-50.6 mg glyphosate/L). Differences were demonstrated in the sensitivity of the selected algae species and, in addition to the individual and combined toxicity of the components presented in the glyphosate-based herbicides. Both of the observed inhibitory and stimulating effects can adversely affect the aquatic ecosystems and water quality of surface waters.

3.
Front Plant Sci ; 14: 1227811, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37636109

RESUMO

Introduction: Iron (Fe) is one of themost important cofactors in the photosynthetic apparatus, and its uptake by chloroplasts has also been associated with the operation of the photosynthetic electron transport chain during reduction-based plastidial Fe uptake. Therefore, plastidial Fe uptake was considered not to be operational in the absence of the photosynthetic activity. Nevertheless, Fe is also required for enzymatic functions unrelated to photosynthesis, highlighting the importance of Fe acquisition by non-photosynthetic plastids. Yet, it remains unclear how these plastids acquire Fe in the absence of photosynthetic function. Furthermore, plastids of etiolated tissues should already possess the ability to acquire Fe, since the biosynthesis of thylakoid membrane complexes requires a massive amount of readily available Fe. Thus, we aimed to investigate whether the reduction-based plastidial Fe uptake solely relies on the functioning photosynthetic apparatus. Methods: In our combined structure, iron content and transcript amount analysis studies, we used Savoy cabbage plant as a model, which develops natural etiolation in the inner leaves of the heads due to the shading of the outer leaf layers. Results: Foliar and plastidial Fe content of Savoy cabbage leaves decreased towards the inner leaf layers. The leaves of the innermost leaf layers proved to be etiolated, containing etioplasts that lacked the photosynthetic machinery and thus were photosynthetically inactive. However, we discovered that these etioplasts contained, and were able to take up, Fe. Although the relative transcript abundance of genes associated with plastidial Fe uptake and homeostasis decreased towards the inner leaf layers, both ferric chelate reductase FRO7 transcripts and activity were detected in the innermost leaf layer. Additionally, a significant NADP(H) pool and NAD(P)H dehydrogenase activity was detected in the etioplasts of the innermost leaf layer, indicating the presence of the reducing capacity that likely supports the reduction-based Fe uptake of etioplasts. Discussion: Based on these findings, the reduction-based plastidial Fe acquisition should not be considered exclusively dependent on the photosynthetic functions.

4.
Toxins (Basel) ; 14(12)2022 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-36548763

RESUMO

A capillary-based immunofluorescence sensor was developed and incorporated in a flow injection analysis system. The light-guiding capillary was illuminated axially by a 473 nm/5 mW solid state laser through a tailored optofluidic connector. High sensitivity of the system was achieved by efficiently collecting and detecting the non-guided fluorescence signal scattered out along the wall of the capillary. The excitation was highly suppressed with bandpass and dichroic filters by simultaneously exploiting the guiding effect inside the capillary. The glass capillary used as a measuring cell was silanized in liquid phase by 3-aminopropyltriethoxysilane (APTS), and the biomolecules were immobilized using glutaraldehyde inside the capillary. The applicability of the developed system was tested with a bovine serum albumin (BSA)-anti-BSA-IgG model-molecule pair, using a fluorescently labeled secondary antibody. Based on the results of the BSA-anti-BSA experiments, a similar setup using a primary antibody specific for zearalenone (ZON) was established, and a competitive fluorescence measurement system was developed for quantitative determination of ZON. For the measurements, 20 µg/mL ZON-BSA conjugate was immobilized in the capillary, and a 1:2500 dilution of the primary antibody stock solution and a 2 µg/mL secondary antibody solution were set. The developed capillary-based immunosensor allowed a limit of detection (LOD) of 0.003 ng/mL and a limit of quantification (LOQ) of 0.007 ng/mL for ZON in the competitive immunosensor setup, with a dynamic detection range of 0.01-10 ng/mL ZON concentrations.


Assuntos
Técnicas Biossensoriais , Micotoxinas , Zearalenona , Zearalenona/análise , Micotoxinas/análise , Imunoensaio , Limite de Detecção , Anticorpos , Corantes
5.
Molecules ; 27(19)2022 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-36235051

RESUMO

An enzyme-linked fluorescent immunoassay (ELFIA) method has been developed for the quantitative analytical determination of the herbicide active ingredient glyphosate in environmental matrices (surface water, soil, and plant tissues). Glyphosate, as a ubiquitous agricultural pollutant, is a xenobiotic substance with exposure in aquatic and terrestrial ecosystems due its extremely high worldwide application rate. The immunoassay developed in Project Aquafluosense is part of a fluorescence-based instrumentation setup for the in situ determination of several characteristic water quality parameters. The 96-well microplate-based competitive immunoassay method applies fluorescence signal detection in the concentration range of 0-100 ng/mL glyphosate. Application of the fluorescent signal provides a limit of detection of 0.09 ng/mL, which is 2.5-fold lower than that obtained with a visual absorbance signal. Beside the improved limit of detection, determination by fluorescence provided a wider and steeper dynamic range for glyphosate detection. No matrix effect appeared for the undiluted surface water samples, while plant tissues and soil samples required dilution rates of 1:10 and 1:100, respectively. No cross-reaction was determined with the main metabolite of glyphosate, N-aminomethylphosphonic acid, and related compounds.


Assuntos
Poluentes Ambientais , Herbicidas , Ecossistema , Imunofluorescência , Glicina/análogos & derivados , Herbicidas/análise , Solo , Xenobióticos , Glifosato
6.
Toxins (Basel) ; 13(3)2021 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-33801263

RESUMO

Project Aquafluosense is designed to develop prototypes for a fluorescence-based instrumentation setup for in situ measurements of several characteristic parameters of water quality. In the scope of the project an enzyme-linked fluorescent immunoassay (ELFIA) method has been developed for the detection of several environmental xenobiotics, including mycotoxin zearalenone (ZON). ZON, produced by several plant pathogenic Fusarium species, has recently been identified as an emerging pollutant in surface water, presenting a hazard to aquatic ecosystems. Due to its physico-chemical properties, detection of ZON at low concentrations in surface water is a challenging task. The 96-well microplate-based fluorescence instrument is capable of detecting ZON in the concentration range of 0.09-400 ng/mL. The sensitivity and accuracy of the analytical method has been demonstrated by a comparative assessment with detection by high-performance liquid chromatography and by total internal reflection ellipsometry. The limit of detection of the method, 0.09 ng/mL, falls in the low range compared to the other reported immunoassays, but the main advantage of this ELFIA method is its efficacy in combined in situ applications for determination of various important water quality parameters detectable by induced fluorimerty-e.g., total organic carbon content, algal density or the level of other organic micropollutants detectable by immunofluorimetry. In addition, the immunofluorescence module can readily be expanded to other target analytes if proper antibodies are available for detection.


Assuntos
Monitoramento Ambiental , Ensaio de Imunoadsorção Enzimática , Imunofluorescência , Fusarium/metabolismo , Microbiologia da Água , Zearalenona/análise , Limite de Detecção , Reprodutibilidade dos Testes , Espectrometria de Fluorescência , Qualidade da Água
7.
Opt Express ; 22(9): 10165-80, 2014 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-24921720

RESUMO

The acousto-optical crystals are frequently used, indispensable elements of high technology and modern science, and yet their precise numerical description has not been available. In this paper an accurate, rapid and quite general model of the AO interaction in a Bragg-cell is presented. The suitability of the simulation is intended to be verified experimentally, for which we wanted to apply the most convincing measurement methods. The difficulty of the verification is that the measurement contains unknown parameters. Therefore we performed an elaborated series of measurements and developed a method for the estimation of the unknown parameters.

8.
J Photochem Photobiol B ; 130: 217-25, 2014 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-24345600

RESUMO

Resurrection plants can survive dehydration to air-dry state, thus they are excellent models of understanding drought and dehydration tolerance mechanisms. Haberlea rhodopensis, a chlorophyll-retaining resurrection plant, can survive desiccation to relative water content below 10%. Leaves, detached from plants of sun and shade habitats, were moderately (∼50%) dehydrated in darkness. During desiccation, chlorophyll a fluorescence was detected by the recently innovated wireless Intelligent FluoroSensor (IFS) chlorophyll fluorometer, working with three different detectors: a pulse-amplitude-modulated (PAM) broadband channel and two channels to measure non-modulated red and far-red fluorescence. No change in area-based chlorophyll content of leaves was observed. The maximal quantum efficiency of photosystem II decreased gradually in both shade and sun leaves. Shade leaves could not increase antennae-based quenching, thus inactivated photosystem II took part in quenching of excess irradiation. Sun leaves seemed to be pre-adapted to quench excess light as they established an intensive increase in antennae-based non-photochemical quenching parallel to desiccation. The higher far-red to red antennae-based quenching may sign light-harvesting complex reorganization. Thus, compared to PAM, IFS chlorophyll fluorometer has additional benefits including (i) parallel estimation of changes in the Chl content and (ii) prediction of underlying processes of excitation energy quenching.


Assuntos
Clorofila/metabolismo , Desidratação/metabolismo , Fluorometria/métodos , Folhas de Planta/metabolismo , Traqueófitas , Clorofila A , Ecossistema , Fluorescência , Luz
9.
Ultrasonics ; 51(4): 441-51, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21185582

RESUMO

In the present paper we analyze the electric and acoustic losses in acousto-optic devices, especially in their ultrasonic transducers and the related thermal effects. We include electric and acoustic losses into the classical electric equivalent model of the transducer, to explain the characteristics of the measured electric and thermal behavior. Measured temperature distributions on the acousto-optic crystal faces serve visualization of the conversion efficiency of the radio-frequency input to bulk acoustic waves. We show that the pronounced acoustic frequency dependence of the temperature distribution is in correlation with the frequency dependent losses in the transducer and in the bulk. We also demonstrate experimentally the effectiveness of our active and passive heat removing and temperature stabilization methods.

10.
Appl Opt ; 49(1): 6-11, 2010 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-20062484

RESUMO

We present a comprehensive study of the acoustic-to-optic phase transfer during anisotropic Bragg diffraction. Our results refine the operating theory of widely used acousto-optic implementations such as pulse shapers, delay lines, and phase modulators.

11.
Appl Spectrosc ; 60(2): 162-7, 2006 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-16542567

RESUMO

Determining the thickness of plastic sheets on the basis of near-infrared spectra by building a multivariate calibration model requires a relatively large sample set. In the thickness region, where just a few non-interference-patterned samples are available, it is a waste of information if interference-patterned spectra are excluded. After eliminating the interference pattern from the spectra (filtering), the calibration set can be extended with these filtered spectra. Fourier transformation of an interference-patterned spectrum versus wavenumber leads to a Fourier spectrum as a function of the optical path length containing an easily recognizable interference peak. Unfortunately, this peak coincides with components of the spectral information of absorbance, on which multivariate calibration is based. Hence, replacing the interference peak is a cardinal step of the filtering process. Since the Fourier spectrum versus optical path length function is not known, it has been shown that interpolated data over the remaining Fourier components can be substituted for the missing part of the spectrum. In this paper, a novel method is proposed that uses a linear approximation between the Fourier spectra and the thickness values so that the regression coefficients are calculated on components of all but the interference-patterned Fourier spectra and the corresponding thicknesses, and then the deleted components in the filtered spectrum are replaced. This latter method yields more detailed Fourier spectra. Reducing the disturbing effect of scattering is also discussed. The effectiveness of the filtering was tested on low-density polyethylene sheets. The performance of different calibration models with or without filtering was compared by significance tests on standard error of prediction values. Application of the new Fourier type filtering technique led to significant improvements in the calibration performance.


Assuntos
Algoritmos , Teste de Materiais/métodos , Membranas Artificiais , Polietileno/análise , Polietileno/química , Refratometria/métodos , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Calibragem , Análise de Fourier , Polietileno/normas , Espectroscopia de Infravermelho com Transformada de Fourier/normas
12.
Int J Phytoremediation ; 5(1): 13-23, 2003.
Artigo em Inglês | MEDLINE | ID: mdl-12710232

RESUMO

Soil phytoextraction is based on the ability of plants to extract contaminants from the soil. For less bioavailable metals, such as Pb, a chelator is added to the soil to mobilize the metal. The effect can be significant and in certain species, heavy metal accumulation can rapidly increase 10-fold. Accumulation of high levels of toxic metals may result in irreversible damage to the plant. Monitoring and controlling the phytotoxicity caused by EDTA-induced metal accumulation is crucial to optimize the remedial process, i.e. to achieve maximum uptake. We describe an EDTA-application procedure that minimizes phytotoxicity by increasing plant tolerance and allows phytoextraction of elevated levels of Pb and Cd. Brassica juncea is tested in soil with typical Pb and Cd concentrations of 500 mg kg-1 and 15 mg kg-1, respectively. Instead of a single dose treatment, the chelator is applied in multiple doses, that is, in several small increments, thus providing time for plants to initiate their adaptation mechanisms and raise their damage threshold. In situ monitoring of plant stress conditions by chlorophyll fluorescence recording allows for the identification of the saturating heavy metal accumulation process and of simultaneous plant deterioration.


Assuntos
Adaptação Fisiológica/fisiologia , Metais Pesados/metabolismo , Plantas/metabolismo , Poluentes do Solo/metabolismo , Solo/análise , Adaptação Fisiológica/efeitos dos fármacos , Biodegradação Ambiental/efeitos dos fármacos , Biomarcadores , Cádmio/metabolismo , Ácido Edético/farmacologia , Ambiente Controlado , Chumbo/metabolismo , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo , Plantas/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...