Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Environ Manage ; 210: 239-254, 2018 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-29348059

RESUMO

Reducing fertilizer use is a priority in the quest for sustainable forestry systems. In short rotation Eucalyptus plantations, NPK pellets are routinely added to the seedling's top soil layer at planting, potentially leading to increased seedling mortality, nutrient loss and environmental degradation. To address this triple challenge, the development of efficient fertilization practices is essential. In the present work, we synthesized a crosslinked acrylic-cellulosic superabsorbent composite (SAPH-BAL) containing small amounts of specific nutrients integrated in the polymer matrix. We analyzed the composite's chemical and rheological properties, and assessed the viability of Eucalyptus plantations supplied with it at planting. Physiological measurements confirmed the suitability of SAPH-BAL in greenhouse-grown potted seedlings subjected to different growth conditions, showing that it efficiently delivers nutrients while protecting seedlings from drought stress. Field experiments carried out at ten South American locations covering an ample range of environmental conditions confirmed the beneficial effect of SAPH-BAL on growth and survival in comparison to the conventional fertilization scheme (superabsorbent + 75 g NPK). Furthermore, it was found that plants treated with SAPH-BAL were less affected by the differences in rainfall regimes during the experiments compared to those fertilized conventionally. To the best of our knowledge this is the first report describing the successful use of superabsorbents for root targeted delivery of fertilizers in forestry operations.


Assuntos
Fertilizantes , Agricultura Florestal , Conservação dos Recursos Naturais , Eucalyptus , Solo , Água
2.
Mol Genet Genomics ; 272(4): 470-9, 2004 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-15517390

RESUMO

Excess light can impose severe oxidative stress on photosynthetic organisms. We have characterized high-light responses in wild-type Chlamydomonas reinhardtii and in the npq1 lor1 double mutant. The npq1 lor1 strain lacks two photoprotective carotenoids, lutein and zeaxanthin, and experiences acute photo-oxidative stress upon exposure to excess light. To examine the ability of npq1 lor1 cells to respond to photo-oxidative stress, we measured changes in lipid-soluble antioxidants following a shift from low light to high light in the wild type and the double mutant. The size of the xanthophyll cycle pool increased in both the wild type and mutant during the first 6 h of exposure to high light levels, but then decreased in the mutant during photo-oxidative bleaching. The level of alpha-tocopherol (vitamin E) was constant in the wild type and mutant during the first 6 h; then it increased by three-fold in the wild type but declined in npq1 lor1 cells. We also used cDNA microarrays and RNA gel-blot analysis to monitor differences in gene expression. Both strains showed an initial light-stress response in the form of a transient increase in expression of (1) GPXH, a glutathione peroxidase gene that has been shown to respond specifically to singlet oxygen and lipid peroxidation; (2) SMT1, a gene for a putative sterol C-methyltransferase; and (3) LI818r, a stress-responsive member of the light-harvesting complex superfamily. These transient changes in gene expression in high light were followed by a second series of changes in npq1 lor1, coincident with declines in lipid-soluble antioxidants but preceding detectable photo-oxidative damage to proteins and lipids. Thus, the response of npq1 lor1 to high light is unexpectedly complex, with initial changes in lipid-soluble antioxidants and RNA levels that are associated with acclimation in the wild type and a second wave of changes that accompanies photo-oxidative bleaching.


Assuntos
Antioxidantes/metabolismo , Chlamydomonas reinhardtii/metabolismo , Regulação da Expressão Gênica , Luz , Estresse Oxidativo , RNA Mensageiro/metabolismo , Xantofilas/metabolismo , Animais , Chlamydomonas reinhardtii/genética , Cromatografia Líquida de Alta Pressão , Primers do DNA , Perfilação da Expressão Gênica , Glutationa Peroxidase/metabolismo , Metiltransferases/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Vitamina E/metabolismo , Xantofilas/deficiência
3.
Philos Trans R Soc Lond B Biol Sci ; 355(1402): 1385-94, 2000 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-11127993

RESUMO

The involvement of excited and highly reactive intermediates in oxygenic photosynthesis inevitably results in the generation of reactive oxygen species. To protect the photosynthetic apparatus from oxidative damage, xanthophyll pigments are involved in the quenching of excited chlorophyll and reactive oxygen species, namely 1Chl*, 3Chl*, and 1O2*. Quenching of 1Chl* results in harmless dissipation of excitation energy as heat and is measured as non-photochemical quenching (NPQ) of chlorophyll fluorescence. The multiple roles of xanthophylls in photoprotection are being addressed by characterizing mutants of Chlarnydomonas reinhardtii and Arabidopsis thaliana. Analysis of Arabidopsis mutants that are defective in 1Chl* quenching has shown that, in addition to specific xanthophylls, the psbS gene is necessary for NPQ. Double mutants of Chlamydomonas and Arabidopsis that are deficient in zeaxanthin, lutein and NPQ undergo photo-oxidative bleaching in high light. Extragenic suppressors of the Chlamydomonas npq1 lor1 double mutant identify new mutations that restore varying levels of zeaxanthin accumulation and allow survival in high light.


Assuntos
Luteína/metabolismo , Fotossíntese/fisiologia , Animais , Arabidopsis , Chlamydomonas reinhardtii , Clorófitas/metabolismo , Luteína/genética , Estresse Oxidativo , Oxirredutases/genética , Oxirredutases/metabolismo , Proteínas PrPC/metabolismo , Espécies Reativas de Oxigênio , Xantofilas , Zeaxantinas , beta Caroteno/análogos & derivados , beta Caroteno/fisiologia
4.
Planta ; 205(2): 288-96, 1998 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-9637072

RESUMO

We investigated the effect of photosynthetic electron transport and of the photosystem II (PSII) chlorophyll (Chl) antenna size on the rate of PSII photoinhibitory damage. To modulate the rate of photosynthesis and the light-harvesting capacity in the unicellular chlorophyte Dunaliella salina Teod., we varied the amount of inorganic carbon in the culture medium. Cells were grown under high irradiance either with a limiting supply of inorganic carbon, provided by an initial concentration of 25 mM NaHCO3, or with supplemental CO2 bubbled in the form of 3% CO2 in air. The NaHCO3-grown cells displayed slow rates of photosynthesis and had a small PSII light-harvesting Chl antenna size (60 Chl molecules). The half-time of PSII photodamage was 40 min. When switched to supplemental CO2 conditions, the rate of photodamage was retarded to a t1/2 = 70 min. Conversely, CO2-supplemented cells displayed faster rates of photosynthesis and a larger PSII light-harvesting Chl antenna size (500 Chl molecules). They also showed a rate of photodamage with t1/2 = 40 min. When depleted of CO2, the rate of photodamage was accelerated (t1/2 = 20 min). These results indicate that the in-vivo susceptibility to photodamage is modulated by the rate of forward electron transport through PSII. Moreover, a large Chl antenna size enhances the rate of light absorption and photodamage and, therefore, counters the mitigating effect of forward electron transport. We propose that under steady-state photosynthesis, the rate of light absorption (determined by incident light intensity and PS Chl antenna size) and the rate of forward electron transport (determined by CO2 availability) modulate the oxidation/reduction state of the primary PSII acceptor QA, which in turn defines the low/high probability for photodamage in the PSII reaction center.


Assuntos
Clorofila/fisiologia , Clorófitas/fisiologia , Fotossíntese/fisiologia , Complexo de Proteínas do Centro de Reação Fotossintética , Dióxido de Carbono , Complexos de Proteínas Captadores de Luz , Complexo de Proteína do Fotossistema II , Pigmentos Biológicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...