Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Toxins (Basel) ; 14(12)2022 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-36548784

RESUMO

Aflatoxin, a naturally occurring toxin produced by the fungus Aspergillus flavus, is the most economically important mycotoxin in the world, with harmful effects on human and animal health. Preventive measures such as irrigation and planting dates can minimize aflatoxin contamination most years. However, no control strategy is completely effective when environmental conditions are extremely favorable for growth of the fungus. The most effective control method is growing maize hybrids with genetic resistance to aflatoxin contamination. The aim of this research was to evaluate the sensitivity of different maize hybrids to A. flavus infection and aflatoxin accumulation. Twenty commercial maize hybrids were evaluated in field trials with artificial inoculations using the colonized toothpicks method. The mycotoxin production potential of A. flavus isolates was confirmed by cluster amplification patterns (CAPs) analysis. The results of this research indicated the existence of significant differences in maize hybrids susceptibility to Aspergillus ear rot and aflatoxin B1 accumulation. No hybrid included in this research showed complete resistance in all conditions, but some hybrids showed partial resistance. Different hybrids also responded differently depending on the sowing date. This research showed that infection intensity is not always consistent with aflatoxin levels, and therefore visual evaluation is not enough to assess maize safety.


Assuntos
Aflatoxinas , Animais , Humanos , Aflatoxinas/análise , Zea mays/genética , Zea mays/microbiologia , Sérvia , Aspergillus/genética , Aspergillus flavus/genética
2.
Toxins (Basel) ; 12(3)2020 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-32150883

RESUMO

Aspergillus flavus is the main producer of aflatoxin B1, one of the most toxic contaminants of food and feed. With global warming, climate conditions have become favourable for aflatoxin contamination of agricultural products in several European countries, including Serbia. The infection of maize with A. flavus, and aflatoxin synthesis can be controlled and reduced by application of a biocontrol product based on non-toxigenic strains of A. flavus. Biological control relies on competition between atoxigenic and toxigenic strains. This is the most commonly used biological control mechanism of aflatoxin contamination in maize in countries where aflatoxins pose a significant threat. Mytoolbox Af01, a native atoxigenic A. flavus strain, was obtained from maize grown in Serbia and used to produce a biocontrol product that was applied in irrigated and non-irrigated Serbian fields during 2016 and 2017. The application of this biocontrol product reduced aflatoxin levels in maize kernels (51-83%). The biocontrol treatment had a highly significant effect of reducing total aflatoxin contamination by 73%. This study showed that aflatoxin contamination control in Serbian maize can be achieved through biological control methods using atoxigenic A. flavus strains.


Assuntos
Aflatoxinas/análise , Aspergillus flavus/genética , Agentes de Controle Biológico , Contaminação de Alimentos/prevenção & controle , Controle Biológico de Vetores/métodos , Zea mays/microbiologia , Aflatoxinas/biossíntese , Aspergillus flavus/metabolismo , Sérvia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...