Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
PLoS Pathog ; 18(8): e1010543, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35969644

RESUMO

Although picornaviruses are conventionally considered 'nonenveloped', members of multiple picornaviral genera are released nonlytically from infected cells in extracellular vesicles. The mechanisms underlying this process are poorly understood. Here, we describe interactions of the hepatitis A virus (HAV) capsid with components of host endosomal sorting complexes required for transport (ESCRT) that play an essential role in release. We show release of quasi-enveloped virus (eHAV) in exosome-like vesicles requires a conserved export signal located within the 8 kDa C-terminal VP1 pX extension that functions in a manner analogous to late domains of canonical enveloped viruses. Fusing pX to a self-assembling engineered protein nanocage (EPN-pX) resulted in its ESCRT-dependent release in extracellular vesicles. Mutational analysis identified a 24 amino acid peptide sequence located within the center of pX that was both necessary and sufficient for nanocage release. Deleting a YxxL motif within this sequence ablated eHAV release, resulting in virus accumulating intracellularly. The pX export signal is conserved in non-human hepatoviruses from a wide range of mammalian species, and functional in pX sequences from bat hepatoviruses when fused to the nanocage protein, suggesting these viruses are released as quasi-enveloped virions. Quantitative proteomics identified multiple ESCRT-related proteins associating with EPN-pX, including ALG2-interacting protein X (ALIX), and its paralog, tyrosine-protein phosphatase non-receptor type 23 (HD-PTP), a second Bro1 domain protein linked to sorting of ubiquitylated cargo into multivesicular endosomes. RNAi-mediated depletion of either Bro1 domain protein impeded eHAV release. Super-resolution fluorescence microscopy demonstrated colocalization of viral capsids with endogenous ALIX and HD-PTP. Co-immunoprecipitation assays using biotin-tagged peptides and recombinant proteins revealed pX interacts directly through the export signal with N-terminal Bro1 domains of both HD-PTP and ALIX. Our study identifies an exceptionally potent viral export signal mediating extracellular release of virus-sized protein assemblies and shows release requires non-redundant activities of both HD-PTP and ALIX.


Assuntos
Complexos Endossomais de Distribuição Requeridos para Transporte , Vírus da Hepatite A , Animais , Proteínas de Ligação ao Cálcio/metabolismo , Capsídeo/metabolismo , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/metabolismo , Proteínas de Ciclo Celular/metabolismo , Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Vírus da Hepatite A/genética , Vírus da Hepatite A/metabolismo , Mamíferos , Proteínas Virais/metabolismo
2.
Methods Mol Biol ; 1998: 291-304, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31250310

RESUMO

The endosomal sorting complex required for transport (ESCRT) machinery comprises five complexes that act sequentially to recruit and cluster transmembrane cargo proteins (ESCRT-0), drive membrane curving (ESCRT-I and II), catalyze fission of cargo-containing vesicles (ESCRT-III and VPS/VTA1), and disassemble and recycle the ESCRT-III complex (VPS/VTA1). Since interactions between ESCRT components and cellular or microbial proteins are typically weak, transient, and involve membrane proteins, they are often difficult to study by standard technologies. Here, we describe the utility of high-throughput protein-fragment complementation assays based on the reconstitution of a split luciferase reporter to screen for interactions between any protein and a library of ESCRT proteins in mammalian cells and provide a detailed protocol for these assays.


Assuntos
Bioensaio/métodos , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Mapeamento de Interação de Proteínas/métodos , Animais , Copépodes , Complexos Endossomais de Distribuição Requeridos para Transporte/química , Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Proteínas de Fluorescência Verde/química , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Células HEK293 , Humanos , Luciferases/química , Luciferases/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Transfecção
3.
J Med Chem ; 62(12): 5810-5831, 2019 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-31136173

RESUMO

There are currently no approved drugs for the treatment of emerging viral infections, such as dengue and Ebola. Adaptor-associated kinase 1 (AAK1) is a cellular serine-threonine protein kinase that functions as a key regulator of the clathrin-associated host adaptor proteins and regulates the intracellular trafficking of multiple unrelated RNA viruses. Moreover, AAK1 is overexpressed specifically in dengue virus-infected but not bystander cells. Because AAK1 is a promising antiviral drug target, we have embarked on an optimization campaign of a previously identified 7-azaindole analogue, yielding novel pyrrolo[2,3- b]pyridines with high AAK1 affinity. The optimized compounds demonstrate improved activity against dengue virus both in vitro and in human primary dendritic cells and the unrelated Ebola virus. These findings demonstrate that targeting cellular AAK1 may represent a promising broad-spectrum antiviral strategy.


Assuntos
Antivirais/síntese química , Antivirais/farmacologia , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/farmacologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Piridinas/síntese química , Piridinas/farmacologia , Antivirais/química , Antivirais/metabolismo , Linhagem Celular , Técnicas de Química Sintética , Humanos , Simulação de Acoplamento Molecular , Conformação Proteica , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/metabolismo , Proteínas Serina-Treonina Quinases/química , Proteínas Serina-Treonina Quinases/metabolismo , Piridinas/química , Piridinas/metabolismo , Relação Estrutura-Atividade
4.
Cell Rep ; 26(7): 1800-1814.e5, 2019 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-30759391

RESUMO

The mechanisms that regulate envelopment of HCV and other viruses that bud intracellularly and/or lack late-domain motifs are largely unknown. We reported that K63 polyubiquitination of the HCV nonstructural (NS) 2 protein mediates HRS (ESCRT-0 component) binding and envelopment. Nevertheless, the ubiquitin signaling that governs NS2 ubiquitination remained unknown. Here, we map the NS2 interactome with the ubiquitin proteasome system (UPS) via mammalian cell-based screens. NS2 interacts with E3 ligases, deubiquitinases, and ligase regulators, some of which are candidate proviral or antiviral factors. MARCH8, a RING-finger E3 ligase, catalyzes K63-linked NS2 polyubiquitination in vitro and in HCV-infected cells. MARCH8 is required for infection with HCV, dengue, and Zika viruses and specifically mediates HCV envelopment. Our data reveal regulation of HCV envelopment via ubiquitin signaling and both a viral protein substrate and a ubiquitin K63-linkage of the understudied MARCH8, with potential implications for cell biology, virology, and host-targeted antiviral design.


Assuntos
Hepacivirus/metabolismo , Hepatite C/virologia , Ubiquitina-Proteína Ligases/metabolismo , Proteínas não Estruturais Virais/metabolismo , Linhagem Celular Tumoral , Retículo Endoplasmático/metabolismo , Células HEK293 , Hepacivirus/patogenicidade , Hepatite C/genética , Hepatite C/metabolismo , Humanos , Transdução de Sinais , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitinação
5.
Cell Rep ; 26(5): 1104-1111.e4, 2019 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-30699342

RESUMO

There is a need to identify biomarkers predictive of severe dengue. Single-cohort transcriptomics has not yielded generalizable results or parsimonious, predictive gene sets. We analyzed blood samples of dengue patients from seven gene expression datasets (446 samples, five countries) using an integrated multi-cohort analysis framework and identified a 20-gene set that predicts progression to severe dengue. We validated the predictive power of this 20-gene set in three retrospective dengue datasets (84 samples, three countries) and a prospective Colombia cohort (34 patients), with an area under the receiver operating characteristic curve of 0.89, 100% sensitivity, and 76% specificity. The 20-gene dengue severity scores declined during the disease course, suggesting an infection-triggered host response. This 20-gene set is strongly associated with the progression to severe dengue and represents a predictive signature, generalizable across ages, host genetic factors, and virus strains, with potential implications for the development of a host response-based dengue prognostic assay.


Assuntos
Progressão da Doença , Dengue Grave/genética , Estudos de Coortes , Simulação por Computador , Humanos , Células Matadoras Naturais/metabolismo , Células Matadoras Naturais/virologia , Células T Matadoras Naturais/metabolismo , Células T Matadoras Naturais/virologia , Reprodutibilidade dos Testes , Dengue Grave/imunologia
6.
Cell Mol Life Sci ; 75(20): 3693-3714, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30043139

RESUMO

Viruses are obligate intracellular pathogens that are dependent on cellular machineries for their replication. Recent technological breakthroughs have facilitated reliable identification of host factors required for viral infections and better characterization of the virus-host interplay. While these studies have revealed cellular machineries that are uniquely required by individual viruses, accumulating data also indicate the presence of broadly required mechanisms. Among these overlapping cellular functions are components of intracellular membrane trafficking pathways. Here, we review recent discoveries focused on how viruses exploit intracellular membrane trafficking pathways to promote various stages of their life cycle, with an emphasis on cellular factors that are usurped by a broad range of viruses. We describe broadly required components of the endocytic and secretory pathways, the Endosomal Sorting Complexes Required for Transport pathway, and the autophagy pathway. Identification of such overlapping host functions offers new opportunities to develop broad-spectrum host-targeted antiviral strategies.


Assuntos
Membranas Intracelulares/metabolismo , Vírus/metabolismo , Autofagia , Clatrina/metabolismo , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Interações Hospedeiro-Patógeno , Humanos , Membranas Intracelulares/virologia , Lisossomos/metabolismo , Via Secretória , Internalização do Vírus , Vírus/patogenicidade
7.
J Med Chem ; 61(14): 6178-6192, 2018 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-29953812

RESUMO

There is an urgent need for strategies to combat dengue and other emerging viral infections. We reported that cyclin G-associated kinase (GAK), a cellular regulator of the clathrin-associated host adaptor proteins AP-1 and AP-2, regulates intracellular trafficking of multiple unrelated RNA viruses during early and late stages of the viral lifecycle. We also reported the discovery of potent, selective GAK inhibitors based on an isothiazolo[4,3- b]pyridine scaffold, albeit with moderate antiviral activity. Here, we describe our efforts leading to the discovery of novel isothiazolo[4,3- b]pyridines that maintain high GAK affinity and selectivity. These compounds demonstrate improved in vitro activity against dengue virus, including in human primary dendritic cells, and efficacy against the unrelated Ebola and chikungunya viruses. Moreover, inhibition of GAK activity was validated as an important mechanism of antiviral action of these compounds. These findings demonstrate the potential utility of a GAK-targeted broad-spectrum approach for combating currently untreatable emerging viral infections.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Piridinas/química , Piridinas/farmacologia , Tiazóis/química , Antivirais/química , Antivirais/farmacologia , Linhagem Celular , Humanos , Inibidores de Proteínas Quinases/química , Relação Estrutura-Atividade
8.
Antiviral Res ; 155: 67-75, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29753658

RESUMO

There is an urgent need for strategies to combat dengue virus (DENV) infection; a major global threat. We reported that the cellular kinases AAK1 and GAK regulate intracellular trafficking of multiple viruses and that sunitinib and erlotinib, approved anticancer drugs with potent activity against these kinases, protect DENV-infected mice from mortality. Nevertheless, further characterization of the therapeutic potential and underlying mechanism of this approach is required prior to clinical evaluation. Here, we demonstrate that sunitinib/erlotinib combination achieves sustained suppression of systemic infection at approved dose in DENV-infected IFN-α/ß and IFN-γ receptor-deficient mice. Nevertheless, treatment with these blood-brain barrier impermeable drugs delays, yet does not prevent, late-onset paralysis; a common manifestation in this immunodeficient mouse model but not in humans. Sunitinib and erlotinib treatment also demonstrates efficacy in human primary monocyte-derived dendritic cells. Additionally, DENV infection induces expression of AAK1 transcripts, but not GAK, via single-cell transcriptomics, and these kinases are important molecular targets underlying the anti-DENV effect of sunitinib and erlotinib. Lastly, sunitinib/erlotinib combination alters inflammatory cytokine responses in DENV-infected mice. These findings support feasibility of repurposing sunitinib/erlotinib combination as a host-targeted antiviral approach and contribute to understanding its mechanism of antiviral action.


Assuntos
Antivirais/uso terapêutico , Vírus da Dengue/efeitos dos fármacos , Dengue/tratamento farmacológico , Reposicionamento de Medicamentos , Cloridrato de Erlotinib/uso terapêutico , Sunitinibe/uso terapêutico , Animais , Células Cultivadas , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/virologia , Vírus da Dengue/fisiologia , Estudos de Viabilidade , Feminino , Perfilação da Expressão Gênica , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos SCID , Proteínas Serina-Treonina Quinases/genética , Análise de Célula Única , Replicação Viral/efeitos dos fármacos
9.
Cell Host Microbe ; 23(4): 427-429, 2018 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-29649437

RESUMO

siRNA approaches have demonstrated promise in treating viral infections in animal models, but poor delivery limits clinical application. In this issue of Cell Host & Microbe, Beloor et al. (2018) report that nose-to-brain delivery of viral-targeted siRNA cures mice from West Nile virus encephalitis, with potential implications for human infection.


Assuntos
Flavivirus , Nariz , Animais , Encéfalo , Humanos , Camundongos , RNA Interferente Pequeno , Febre do Nilo Ocidental , Vírus do Nilo Ocidental
10.
mBio ; 9(2)2018 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-29535204

RESUMO

Hepatitis C virus (HCV) spreads via secreted cell-free particles or direct cell-to-cell transmission. Yet, virus-host determinants governing differential intracellular trafficking of cell-free- and cell-to-cell-transmitted virus remain unknown. The host adaptor proteins (APs) AP-1A, AP-1B, and AP-4 traffic in post-Golgi compartments, and the latter two are implicated in basolateral sorting. We reported that AP-1A mediates HCV trafficking during release, whereas the endocytic adaptor AP-2 mediates entry and assembly. We demonstrated that the host kinases AAK1 and GAK regulate HCV infection by controlling these clathrin-associated APs. Here, we sought to define the roles of AP-4, a clathrin-independent adaptor; AP-1A; and AP-1B in HCV infection. We screened for interactions between HCV proteins and the µ subunits of AP-1A, AP-1B, and AP-4 by mammalian cell-based protein fragment complementation assays. The nonstructural 2 (NS2) protein emerged as an interactor of these adaptors in this screening and by coimmunoprecipitations in HCV-infected cells. Two previously unrecognized dileucine-based motifs in the NS2 C terminus mediated AP binding and HCV release. Infectivity and coculture assays demonstrated that while all three adaptors mediate HCV release and cell-free spread, AP-1B and AP-4, but not AP-1A, mediate cell-to-cell spread. Live-cell imaging revealed HCV cotrafficking with AP-1A, AP-1B, and AP-4 and that AP-4 mediates HCV trafficking in a post-Golgi compartment. Lastly, HCV cell-to-cell spread was regulated by AAK1 and GAK and thus susceptible to treatment with AAK1 and GAK inhibitors. These data provide a mechanistic understanding of HCV trafficking in distinct release pathways and reveal a requirement for APs in cell-to-cell viral spread.IMPORTANCE HCV spreads via cell-free infection or cell-to-cell contact that shields it from antibody neutralization, thereby facilitating viral persistence. Yet, factors governing this differential sorting remain unknown. By integrating proteomic, RNA interference, genetic, live-cell imaging, and pharmacological approaches, we uncover differential coopting of host adaptor proteins (APs) to mediate HCV traffic at distinct late steps of the viral life cycle. We reported that AP-1A and AP-2 mediate HCV trafficking during release and assembly, respectively. Here, we demonstrate that dileucine motifs in the NS2 protein mediate AP-1A, AP-1B, and AP-4 binding and cell-free virus release. Moreover, we reveal that AP-4, an adaptor not previously implicated in viral infections, mediates cell-to-cell spread and HCV trafficking. Lastly, we demonstrate cell-to-cell spread regulation by AAK1 and GAK, host kinases controlling APs, and susceptibility to their inhibitors. This study provides mechanistic insights into virus-host determinants that facilitate HCV trafficking, with potential implications for pathogenesis and antiviral agent design.


Assuntos
Complexo 1 de Proteínas Adaptadoras/metabolismo , Complexo 4 de Proteínas Adaptadoras/metabolismo , Hepacivirus/fisiologia , Interações Hospedeiro-Patógeno , Proteínas não Estruturais Virais/metabolismo , Liberação de Vírus , Linhagem Celular , Humanos , Imunoprecipitação , Ligação Proteica , Mapeamento de Interação de Proteínas
12.
J Clin Invest ; 127(4): 1338-1352, 2017 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-28240606

RESUMO

Global health is threatened by emerging viral infections, which largely lack effective vaccines or therapies. Targeting host pathways that are exploited by multiple viruses could offer broad-spectrum solutions. We previously reported that AAK1 and GAK, kinase regulators of the host adaptor proteins AP1 and AP2, are essential for hepatitis C virus (HCV) infection, but the underlying mechanism and relevance to other viruses or in vivo infections remained unknown. Here, we have discovered that AP1 and AP2 cotraffic with HCV particles in live cells. Moreover, we found that multiple viruses, including dengue and Ebola, exploit AAK1 and GAK during entry and infectious virus production. In cultured cells, treatment with sunitinib and erlotinib, approved anticancer drugs that inhibit AAK1 or GAK activity, or with more selective compounds inhibited intracellular trafficking of HCV and multiple unrelated RNA viruses with a high barrier to resistance. In murine models of dengue and Ebola infection, sunitinib/erlotinib combination protected against morbidity and mortality. We validated sunitinib- and erlotinib-mediated inhibition of AAK1 and GAK activity as an important mechanism of antiviral action. Additionally, we revealed potential roles for additional kinase targets. These findings advance our understanding of virus-host interactions and establish a proof of principle for a repurposed, host-targeted approach to combat emerging viruses.


Assuntos
Antineoplásicos/farmacologia , Antivirais/farmacologia , Cloridrato de Erlotinib/farmacologia , Indóis/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Pirróis/farmacologia , Complexo 1 de Proteínas Adaptadoras/metabolismo , Complexo 2 de Proteínas Adaptadoras/metabolismo , Animais , Linhagem Celular Tumoral , Dengue/prevenção & controle , Dengue/virologia , Vírus da Dengue/efeitos dos fármacos , Vírus da Dengue/metabolismo , Avaliação Pré-Clínica de Medicamentos , Sinergismo Farmacológico , Ebolavirus/efeitos dos fármacos , Ebolavirus/metabolismo , Feminino , Doença pelo Vírus Ebola/prevenção & controle , Doença pelo Vírus Ebola/virologia , Hepacivirus/efeitos dos fármacos , Hepacivirus/metabolismo , Hepatite C/prevenção & controle , Hepatite C/virologia , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/antagonistas & inibidores , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Masculino , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/metabolismo , Transporte Proteico , Sunitinibe , Internalização do Vírus/efeitos dos fármacos
13.
mBio ; 7(6)2016 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-27803188

RESUMO

Enveloped viruses commonly utilize late-domain motifs, sometimes cooperatively with ubiquitin, to hijack the endosomal sorting complex required for transport (ESCRT) machinery for budding at the plasma membrane. However, the mechanisms underlying budding of viruses lacking defined late-domain motifs and budding into intracellular compartments are poorly characterized. Here, we map a network of hepatitis C virus (HCV) protein interactions with the ESCRT machinery using a mammalian-cell-based protein interaction screen and reveal nine novel interactions. We identify HRS (hepatocyte growth factor-regulated tyrosine kinase substrate), an ESCRT-0 complex component, as an important entry point for HCV into the ESCRT pathway and validate its interactions with the HCV nonstructural (NS) proteins NS2 and NS5A in HCV-infected cells. Infectivity assays indicate that HRS is an important factor for efficient HCV assembly. Specifically, by integrating capsid oligomerization assays, biophysical analysis of intracellular viral particles by continuous gradient centrifugations, proteolytic digestion protection, and RNase digestion protection assays, we show that HCV co-opts HRS to mediate a late assembly step, namely, envelopment. In the absence of defined late-domain motifs, K63-linked polyubiquitinated lysine residues in the HCV NS2 protein bind the HRS ubiquitin-interacting motif to facilitate assembly. Finally, ESCRT-III and VPS/VTA1 components are also recruited by HCV proteins to mediate assembly. These data uncover involvement of ESCRT proteins in intracellular budding of a virus lacking defined late-domain motifs and a novel mechanism by which HCV gains entry into the ESCRT network, with potential implications for other viruses. IMPORTANCE: Viruses commonly bud at the plasma membrane by recruiting the host ESCRT machinery via conserved motifs termed late domains. The mechanism by which some viruses, such as HCV, bud intracellularly is, however, poorly characterized. Moreover, whether envelopment of HCV and other viruses lacking defined late domains is ESCRT mediated and, if so, what the entry points into the ESCRT pathway are remain unknown. Here, we report the interaction network of HCV with the ESCRT machinery and a critical role for HRS, an ESCRT-0 complex component, in HCV envelopment. Viral protein ubiquitination was discovered to be a signal for HRS binding and HCV assembly, thereby functionally compensating for the absence of late domains. These findings characterize how a virus lacking defined late domains co-opts ESCRT to bud intracellularly. Since the ESCRT machinery is essential for the life cycle of multiple viruses, better understanding of this virus-host interplay may yield targets for broad-spectrum antiviral therapies.


Assuntos
Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Hepacivirus/fisiologia , Interações Hospedeiro-Patógeno , Proteínas não Estruturais Virais/metabolismo , Montagem de Vírus , Liberação de Vírus , Mapeamento de Interação de Proteínas , Ubiquitinação
14.
J Med Chem ; 58(8): 3393-410, 2015 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-25822739

RESUMO

Cyclin G associated kinase (GAK) emerged as a promising drug target for the treatment of viral infections. However, no potent and selective GAK inhibitors have been reported in the literature to date. This paper describes the discovery of isothiazolo[5,4-b]pyridines as selective GAK inhibitors, with the most potent congeners displaying low nanomolar binding affinity for GAK. Cocrystallization experiments revealed that these compounds behaved as classic type I ATP-competitive kinase inhibitors. In addition, we have demonstrated that these compounds exhibit a potent activity against hepatitis C virus (HCV) by inhibiting two temporally distinct steps in the HCV life cycle (i.e., viral entry and assembly). Hence, these GAK inhibitors represent chemical probes to study GAK function in different disease areas where GAK has been implicated (including viral infection, cancer, and Parkinson's disease).


Assuntos
Antivirais/química , Antivirais/farmacologia , Hepacivirus/efeitos dos fármacos , Hepatite C/tratamento farmacológico , Peptídeos e Proteínas de Sinalização Intracelular/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Piridinas/química , Piridinas/farmacologia , Tiazóis/química , Tiazóis/farmacologia , Linhagem Celular , Cristalografia por Raios X , Hepacivirus/fisiologia , Hepatite C/enzimologia , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/química , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Modelos Moleculares , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Proteínas Serina-Treonina Quinases/química , Proteínas Serina-Treonina Quinases/metabolismo , Internalização do Vírus/efeitos dos fármacos
15.
J Virol ; 89(8): 4387-404, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25653444

RESUMO

UNLABELLED: Hepatitis C virus (HCV) enters its target cell via clathrin-mediated endocytosis. AP-2-associated protein kinase 1 (AAK1) and cyclin G-associated kinase (GAK) are host kinases that regulate clathrin adaptor protein (AP)-mediated trafficking in the endocytic and secretory pathways. We previously reported that AAK1 and GAK regulate HCV assembly by stimulating binding of the µ subunit of AP-2, AP2M1, to HCV core protein. We also discovered that AAK1 and GAK inhibitors, including the approved anticancer drugs sunitinib and erlotinib, could block HCV assembly. Here, we hypothesized that AAK1 and GAK regulate HCV entry independently of their effect on HCV assembly. Indeed, silencing AAK1 and GAK expression inhibited entry of pseudoparticles and cell culture grown-HCV and internalization of Dil-labeled HCV particles with no effect on HCV attachment or RNA replication. AAK1 or GAK depletion impaired epidermal growth factor (EGF)-mediated enhanced HCV entry and endocytosis of EGF receptor (EGFR), an HCV entry cofactor and erlotinib's cancer target. Moreover, either RNA interference-mediated depletion of AP2M1 or NUMB, each a substrate of AAK1 and/or GAK, or overexpression of either an AP2M1 or NUMB phosphorylation site mutant inhibited HCV entry. Last, in addition to affecting assembly, sunitinib and erlotinib inhibited HCV entry at a postbinding step, their combination was synergistic, and their antiviral effect was reversed by either AAK1 or GAK overexpression. Together, these results validate AAK1 and GAK as critical regulators of HCV entry that function in part by activating EGFR, AP2M1, and NUMB and as the molecular targets underlying the antiviral effect of sunitinib and erlotinib (in addition to EGFR), respectively. IMPORTANCE: Understanding the host pathways hijacked by HCV is critical for developing host-centered anti-HCV approaches. Entry represents a potential target for antiviral strategies; however, no FDA-approved HCV entry inhibitors are currently available. We reported that two host kinases, AAK1 and GAK, regulate HCV assembly. Here, we provide evidence that AAK1 and GAK regulate HCV entry independently of their role in HCV assembly and define the mechanisms underlying AAK1- and GAK-mediated HCV entry. By regulating temporally distinct steps in the HCV life cycle, AAK1 and GAK represent "master regulators" of HCV infection and potential targets for antiviral strategies. Indeed, approved anticancer drugs that potently inhibit AAK1 or GAK inhibit HCV entry in addition to assembly. These results contribute to an understanding of the mechanisms of HCV entry and reveal attractive host targets for antiviral strategies as well as approved candidate inhibitors of these targets, with potential implications for other viruses that hijack clathrin-mediated pathways.


Assuntos
Hepacivirus/fisiologia , Hepatite C/fisiopatologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Internalização do Vírus , Western Blotting , Linhagem Celular , Cloridrato de Erlotinib , Hepatite C/metabolismo , Humanos , Indóis/farmacologia , Luciferases , Microscopia de Fluorescência , Plasmídeos/genética , Pirróis/farmacologia , Quinazolinas/farmacologia , Interferência de RNA , RNA Interferente Pequeno/genética , Reação em Cadeia da Polimerase em Tempo Real , Sunitinibe
16.
PLoS Pathog ; 8(8): e1002845, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22916011

RESUMO

Novel therapies are urgently needed against hepatitis C virus infection (HCV), a major global health problem. The current model of infectious virus production suggests that HCV virions are assembled on or near the surface of lipid droplets, acquire their envelope at the ER, and egress through the secretory pathway. The mechanisms of HCV assembly and particularly the role of viral-host protein-protein interactions in mediating this process are, however, poorly understood. We identified a conserved heretofore unrecognized YXXΦ motif (Φ is a bulky hydrophobic residue) within the core protein. This motif is homologous to sorting signals within host cargo proteins known to mediate binding of AP2M1, the µ subunit of clathrin adaptor protein complex 2 (AP-2), and intracellular trafficking. Using microfluidics affinity analysis, protein-fragment complementation assays, and co-immunoprecipitations in infected cells, we show that this motif mediates core binding to AP2M1. YXXΦ mutations, silencing AP2M1 expression or overexpressing a dominant negative AP2M1 mutant had no effect on HCV RNA replication, however, they dramatically inhibited intra- and extracellular infectivity, consistent with a defect in viral assembly. Quantitative confocal immunofluorescence analysis revealed that core's YXXΦ motif mediates recruitment of AP2M1 to lipid droplets and that the observed defect in HCV assembly following disruption of core-AP2M1 binding correlates with accumulation of core on lipid droplets, reduced core colocalization with E2 and reduced core localization to trans-Golgi network (TGN), the presumed site of viral particles maturation. Furthermore, AAK1 and GAK, serine/threonine kinases known to stimulate binding of AP2M1 to host cargo proteins, regulate core-AP2M1 binding and are essential for HCV assembly. Last, approved anti-cancer drugs that inhibit AAK1 or GAK not only disrupt core-AP2M1 binding, but also significantly inhibit HCV assembly and infectious virus production. These results validate viral-host interactions essential for HCV assembly and yield compounds for pharmaceutical development.


Assuntos
Complexo 2 de Proteínas Adaptadoras/metabolismo , Hepacivirus/fisiologia , Hepatite C/metabolismo , Interações Hospedeiro-Patógeno , Proteínas do Core Viral/metabolismo , Montagem de Vírus/fisiologia , Complexo 2 de Proteínas Adaptadoras/genética , Motivos de Aminoácidos , Linhagem Celular , Hepatite C/genética , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Mutação , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Transporte Proteico/genética , RNA Viral/biossíntese , RNA Viral/genética , Proteínas do Core Viral/genética , Rede trans-Golgi/genética , Rede trans-Golgi/metabolismo , Rede trans-Golgi/virologia
17.
Expert Opin Investig Drugs ; 20(2): 153-208, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21235428

RESUMO

INTRODUCTION: because of their important roles in disease and excellent 'druggability', kinases have become the second largest drug target family. The great success of the BCR-ABL inhibitor imatinib in treating chronic myelogenous leukemia illustrates the high potential of kinase inhibitor (KI) therapeutics, but also unveils a major limitation: the development of drug resistance. This is a significant concern as KIs reach large patient populations for an expanding array of indications. AREAS COVERED: we provide an up-to-date understanding of the mechanisms through which KIs function and through which cells can become KI-resistant. We review current and future approaches to overcome KI resistance, focusing on currently approved KIs and KIs in clinical trials. We then discuss approaches to improve KI efficacy and overcome drug resistance and novel approaches to develop less drug resistance-prone KI therapeutics. EXPERT OPINION: although drug resistance is a concern for current KI therapeutics, recent progress in our understanding of the underlying mechanisms and promising technological advances may overcome this limitation and provide powerful new therapeutics.


Assuntos
Antineoplásicos/uso terapêutico , Resistencia a Medicamentos Antineoplásicos , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Terapia de Alvo Molecular , Mutação de Sentido Incorreto , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Quinases/metabolismo , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Ensaios Clínicos como Assunto , Proteínas de Fusão bcr-abl/antagonistas & inibidores , Humanos , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , Leucemia Mielogênica Crônica BCR-ABL Positiva/fisiopatologia , Proteínas Quinases/genética , Estereoisomerismo
18.
Mol Cell ; 33(1): 43-52, 2009 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-19150426

RESUMO

The glycine-rich G loop controls ATP binding and phosphate transfer in protein kinases. Here we show that the functions of Src family and Abl protein tyrosine kinases require an electrostatic interaction between oppositely charged amino acids within their G loops that is conserved in multiple other phylogenetically distinct protein kinases, from plants to humans. By limiting G loop flexibility, it controls ATP binding, catalysis, and inhibition by ATP-competitive compounds such as Imatinib. In WeeB mice, mutational disruption of the interaction results in expression of a Lyn protein with reduced catalytic activity, and in perturbed B cell receptor signaling. Like Lyn(-/-) mice, WeeB mice show profound defects in B cell development and function and succumb to autoimmune glomerulonephritis. This demonstrates the physiological importance of the conserved G loop salt bridge and at the same time distinguishes the in vivo requirement for the Lyn kinase activity from other potential functions of the protein.


Assuntos
Biocatálise , Sequência Conservada , Proteínas Quinases/química , Eletricidade Estática , Quinases da Família src/química , Quinases da Família src/metabolismo , Sequência de Aminoácidos , Animais , Doenças Autoimunes/imunologia , Doenças Autoimunes/patologia , Linfócitos B/citologia , Linfócitos B/efeitos dos fármacos , Linfócitos B/enzimologia , Benzamidas , Biocatálise/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos , Ativação Enzimática/efeitos dos fármacos , Proteínas de Fusão bcr-abl/metabolismo , Mesilato de Imatinib , Camundongos , Camundongos Mutantes , Dados de Sequência Molecular , Mutação/genética , Filogenia , Piperazinas/farmacologia , Estabilidade Proteica/efeitos dos fármacos , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Pirimidinas/farmacologia , Receptores de Antígenos de Linfócitos B/metabolismo , Transdução de Sinais/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...