Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Plant Dis ; 103(4): 656-667, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30823856

RESUMO

Verticillium dahliae is widely distributed in potato and olive fields in Lebanon, causing serious economic losses. However, little is known about the inoculum source, population structure, and genetic diversity of the pathogen or the mechanisms of dissemination within Lebanon. To understand the population structure, a total of 203 isolates sampled from olive (n = 78) and potato (n = 125) were characterized for species, mating type, and race, and the genetic relationships were delineated using 13 microsatellite markers. All isolates except one from potato were V. dahliae, with 55.1 and 12.1% race 1, and 43.6 and 83.1% race 2 in olive and potato, respectively. The genetic structure of the studied population was best described by two large and two small clusters. Membership in the two large clusters was determined by the presence or absence of the effector gene Ave1. Furthermore, genetic structure was moderately associated with the host of origin but was weakly associated with the geographic origin. All but four isolates represented by three multilocus haploid genotypes were MAT1-2. This study identified a clear lack of gene flow between virulence genotypes of V. dahliae despite the proximity of these cropping systems and the wide distribution of genetic diversity among hosts and geographic regions in Lebanon.


Assuntos
Variação Genética , Olea , Solanum tuberosum , Verticillium , DNA Fúngico/genética , Fluxo Gênico , Genótipo , Líbano , Olea/microbiologia , Solanum tuberosum/microbiologia , Verticillium/genética
2.
Plant Dis ; 102(8): 1559-1565, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30673424

RESUMO

Verticillium dahliae Kleb. is a soilborne pathogen causing Verticillium wilt disease on several hosts. The pathogen survival structure (i.e., microsclerotia) can be efficiently spread by different dispersal methods. In the present study, the medium to long dispersal spread of the pathogen through rivers and irrigation canals was investigated. Samples of sediments (n = 29) were gathered from eight Lebanese rivers and three regional irrigation canals, in addition to samples of soil particles and plant residues (n = 14) from irrigation filters in commercial orchards. Specific conventional and real-time nested polymerase chain reaction assays detected the pathogen in six rivers-Al Kabir, Al Bared, Litani, Al Awali, Ostwan, and Litani South-and in all sampled canals-Ostwan, Al Bared, and Litani Canal 900. Starting DNA quantities ranged from 0.2 pg to 21.318 ng and an inoculum density, determined by a traditional plating method, varied between nondetectable and 0.2 microsclerotia/g. Viable V. dahliae microsclerotia were also found in residues collected from mesh-type irrigation filters of five commercial orchards. This study confirms that water is an important inoculum source of V. dahliae, being involved in the efficient spread of microsclerotia in Lebanese agricultural areas.


Assuntos
Irrigação Agrícola/métodos , Doenças das Plantas/microbiologia , Rios/microbiologia , Microbiologia do Solo , Verticillium/fisiologia , DNA Fúngico/genética , Geografia , Sedimentos Geológicos/microbiologia , Líbano , Micologia/métodos , Verticillium/genética , Movimentos da Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA