Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
JMIR Res Protoc ; 9(8): e15997, 2020 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-32657759

RESUMO

BACKGROUND: Sepsis remains a major health challenge with high mortality. Adequate volume administration is fundamental for a successful outcome. However, individual fluid needs differ between patients due to varying degrees of systemic vasodilation, circulatory flow maldistribution, and increased vascular permeability. The current fluid resuscitation practice has been questioned. Fluid overload is associated with higher mortality in sepsis. A sign of fluid overload is extravascular lung water, seen as B lines in lung ultrasound. B lines correlate inversely with oxygenation (measured by a ratio of the partial pressure of arterial oxygen to the fraction of inspired oxygen ie, PaO2/FiO2). Thus, B lines seen by bedside ultrasound may have a role in guiding fluid therapy. OBJECTIVE: We aim to evaluate if fluid administration guided by lung ultrasound in patients with sepsis in emergency departments will lead to better oxygenation and patient outcomes than those in the standard therapy. METHODS: A phase II, multicenter, randomized, open-label, parallel-group, superiority trial will be performed. Patients will be recruited at emergency departments of the participating centers. A total of 340 patients will be randomly allocated to the intervention or standard-of-care group (30mL/kg). The intervention group will receive ultrasound-guided intravenous fluid until 3 B lines appear. The primary outcome will be oxygenation (measured as PaO2/FiO2 ratio) at 48 hours after starting intravenous fluid administration. Secondary outcomes will be patients' outcome parameters, including oxygenation after 15 mL/kg fluid at 6, 12, 24, and 48 hours; sepsis progress through Sequential Organ Failure Assessment (SOFA) scores; pulmonary edema evaluation; and 30-day mortality. RESULTS: The trial will be conducted in accordance with the Declaration of Helsinki. Institutional review board approval will be sought after the participating sites are selected. The protocol will be registered once the institutional review board approval is granted. The trial duration is expected to be 1.5-2.5 years. The study is planned to be performed from 2021 to 2022, with enrollment starting in 2021. First results are expected in 2022. Informed written consent will be obtained before the patient's enrollment in the study. An interim analysis and data monitoring will ensure the patient safety. The results will be published in a peer-reviewed journal and discussed at international conferences. CONCLUSIONS: This is a protocol for a randomized control trial that aims to evaluate the role of bedside ultrasound in guiding fluid therapy in patients with sepsis via B lines evaluation. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID): PRR1-10.2196/15997.

2.
Stem Cell Res Ther ; 11(1): 154, 2020 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-32276654

RESUMO

BACKGROUND: Hepatocyte-like cells (iHEPs) generated by transcription factor-mediated direct reprogramming of somatic cells have been studied as potential cell sources for the development of novel therapies targeting liver diseases. The mechanisms involved in direct reprogramming, stability after long-term in vitro expansion, and safety profile of reprogrammed cells in different experimental models, however, still require further investigation. METHODS: iHEPs were generated by forced expression of Foxa2/Hnf4a in mouse mesenchymal stromal cells and characterized their phenotype stability by in vitro and in vivo analyses. RESULTS: The iHEPs expressed mixed hepatocyte and liver progenitor cell markers, were highly proliferative, and presented metabolic activities in functional assays. A progressive loss of hepatic phenotype, however, was observed after several passages, leading to an increase in alpha-SMA+ fibroblast-like cells, which could be distinguished and sorted from iHEPs by differential mitochondrial content. The resulting purified iHEPs proliferated, maintained liver progenitor cell markers, and, upon stimulation with lineage maturation media, increased expression of either biliary or hepatocyte markers. In vivo functionality was assessed in independent pre-clinical mouse models. Minimal engraftment was observed following transplantation in mice with acute acetaminophen-induced liver injury. In contrast, upon transplantation in a transgenic mouse model presenting host hepatocyte senescence, widespread engraftment and uncontrolled proliferation of iHEPs was observed, forming islands of epithelial-like cells, adipocyte-like cells, or cells presenting both morphologies. CONCLUSION: The results have significant implications for cell reprogramming, suggesting that iHEPs generated by Foxa2/Hnf4a expression have an unstable phenotype and depend on transgene expression for maintenance of hepatocyte-like characteristics, showing a tendency to return to the mesenchymal phenotype of origin and a compromised safety profile.


Assuntos
Células-Tronco Mesenquimais , Animais , Diferenciação Celular , Reprogramação Celular , Hepatócitos , Fígado , Camundongos , Fenótipo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...