Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 6(14): 10870-6, 2014 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-24593164

RESUMO

Li-ion batteries (LIBs) appear nowadays as flagship technology able to power an increasing range of applications starting from small portable electronic devices to advanced electric vehicles. Over the past two decades, the discoveries of new metal-based host structures, together with substantial technical developments, have considerably improved their electrochemical performance, particularly in terms of energy density. To further promote electrochemical storage systems while limiting the demand on metal-based raw materials, a possible parallel research to inorganic-based batteries consists in developing efficient and low-polluting organic electrode materials. For a long time, this class of redox-active materials has been disregarded mainly due to stability issues but, in recent years, progress has been made demonstrating that organics undeniably exhibit considerable assets. On the basis of our ongoing research aiming at elaborating lithiated organic cathode materials, we report herein on a chemical approach that takes advantage of the positive potential shift when switching from para to ortho-position in the dihydroxyterephthaloyl system. In practice, dilithium (2,3-dilithium-oxy)-terephthalate compound (Li4C8H2O6) was first produced through an eco-friendly synthesis scheme based on CO2 sequestration, then characterized, and finally tested electrochemically as lithiated cathode material vs. Li. This new organic salt shows promising electrochemical performance, notably fast kinetics, good cycling stability and above all an average operating potential of 2.85 V vs. Li(+)/Li(0) (i.e., +300 mV in comparison with its para-regioisomer), verifying the relevance of the followed strategy.

2.
Phys Chem Chem Phys ; 14(32): 11398-412, 2012 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-22801734

RESUMO

The stacking parameters, lattice constants, and bond lengths of solvent-free dilithium squarate (Li(2)C(4)O(4)) crystals were investigated using density functional theory with and without dispersion corrections. The shortcoming of the GGA (PBE) calculation with respect to the dispersive forces appears in the form of an overestimation of the unit cell volume up to 5.8%. The original Grimme method for dispersion corrections has been tested together with modified versions of this scheme by changing the damping function. One of the modified dispersion-corrected DFT schemes, related to a rescaling of van der Waals radii, provides significant improvements for the description of intermolecular interactions in Li(2)C(4)O(4) crystals: the predicted unit cell volume lies then within 0.9% from experimental data. We applied this optimised approach to the screening of hypothetical framework structures for the delithiated (LiC(4)O(4)) and lithiated (Li(3)C(4)O(4)) phases, i.e. oxidized and reduced squarate forms. Their relative energies have been analysed in terms of dispersion and electrostatic contributions. The most stable phases among the hypothetical models for a given lithiation rate were selected in order to calculate the corresponding average voltages (either upon lithiation or delithiation of Li(2)C(4)O(4)). A first step towards energy partitioning in view of interpretating crystal phases relative stability in link with (de)-intercalation processes has been performed through the explicit evaluation of electrostatic components of lattice energy from atomic charges gained with the Atoms in Molecules (AIM) method.

3.
Chemistry ; 18(28): 8800-12, 2012 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-22689440

RESUMO

Efficient organic Li-ion batteries require air-stable lithiated organic structures that can reversibly deintercalate Li at sufficiently high potentials. To date, most of the cathode materials reported in the literature are typically synthesized in their fully oxidized form, which restricts the operating potential of such materials and requires use of an anode material in its lithiated state. Reduced forms of quinonic structures could represent examples of lithiated organic-based cathodes that can deintercalate Li(+) at potentials higher than 3 V thanks to substituent effects. Having previously recognized the unique electrochemical properties of the C(6)O(6)-type ring, we have now designed and then elaborated, through a simple three-step method, lithiated 3,6-dihydroxy-2,5-dimethoxy-p-benzoquinone, a new redox amphoteric system derived from the tetralithium salt of tetrahydroxy-p-benzoquinone. Electrochemical investigations revealed that such an air-stable salt can reversibly deintercalate one Li(+) ion on charging with a practical capacity of about 100 mAh g(-1) at about 3 V, albeit with a polarization effect. Better capacity retention was obtained by simply adding an adsorbing additive. A tetrahydrated form of the studied salt was also characterized by XRD and first-principles calculations. Various levels of theory were probed, including DFT with classical functionals (LDA, GGA, PBEsol, revPBE) and models for dispersion corrections to DFT. One of the modified dispersion-corrected DFT schemes, related to a rescaling of both van der Waals radii and s(6) parameter, provides significant improvements to the description of this kind of crystal over other treatments. We then applied this optimized approach to the screening of hypothetical frameworks for the delithiated phases and to search for the anhydrous structure.

4.
Chem Commun (Camb) ; (19): 2194-6, 2008 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-18463737

RESUMO

Complementary shapes of the neutral symmetrical halogen-bond bis-donor core and octahedral inorganic cluster core prevent halogen-bonded polymers developing in more than one direction, favouring further templating by conducting radical cation slabs and yielding an 8 : 1 : 1 phase formulation instead of n : 2 : 1, with a 2D net, or m : 3 : 1, with a pseudo-cubic architecture, which may in principle also be targeted.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...