Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Rev Invest Clin ; 71(6): 402-407, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31823969

RESUMO

BACKGROUND: Amebiasis is an infectious disease caused by Entamoeba histolytica. It represents one of the three worldwide leading causes of death by parasites and a public health problem due to its frequency, morbidity, mortality, and easy dispersion. OBJECTIVE: The study was aimed to evaluate the in vitro effect of Lactobacillus spp. postbiotics on E. histolytica trophozoites (HM1-IMSS strain) and to determine morphometric changes in trophozoite membrane by atomic force microscopy (AFM). METHODS: Bioassays on trophozoites were conducted with lyophilized postbiotics at 0.1, 0.3, and 0.5 mg/mL concentrations, and trophozoite samples were obtained for AFM analysis. RESULTS: Results indicated postbiotic inhibitory activity; the highest percentage inhibition was 89.63% at 0.5 mg/mL. Trophozoites nanomechanical analysis showed 28.32% increase in ruggedness and 56% decrease in size with treatments compared to the control. CONCLUSION: Our study showed that the synergy of Lactobacillus postbiotics inhibited E. histolytica HM1-IMSS in vitro growth under axenic conditions, inducing morphometric alterations in trophozoites' cell membrane. These results would allow designing strategies or treatments aimed at E. histolytica control in the future.


Assuntos
Entamoeba histolytica/fisiologia , Lactobacillus/fisiologia , Trofozoítos/fisiologia , Humanos , Técnicas In Vitro , Probióticos/farmacologia
2.
Rev. invest. clín ; 71(6): 402-407, Nov.-Dec. 2019. tab, graf
Artigo em Inglês | LILACS | ID: biblio-1289712

RESUMO

ABSTRACT Background Amebiasis is an infectious disease caused by Entamoeba histolytica. It represents one of the three worldwide leading causes of death by parasites and a public health problem due to its frequency, morbidity, mortality, and easy dispersion. Objective The study was aimed to evaluate the in vitro effect of Lactobacillus spp. postbiotics on E. histolytica trophozoites (HM1-IMSS strain) and to determine morphometric changes in trophozoite membrane by atomic force microscopy (AFM). Methods Bioassays on trophozoites were conducted with lyophilized postbiotics at 0.1, 0.3, and 0.5 mg/mL concentrations, and trophozoite samples were obtained for AFM analysis Results Results indicated postbiotic inhibitory activity; the highest percentage inhibition was 89.63% at 0.5 mg/mL. Trophozoites nanomechanical analysis showed 28.32% increase in ruggedness and 56% decrease in size with treatments compared to the control. Conclusion Our study showed that the synergy of Lactobacillus postbiotics inhibited E. histolytica HM1-IMSS in vitro growth under axenic conditions, inducing morphometric alterations in trophozoites’ cell membrane. These results would allow designing strategies or treatments aimed at E. histolytica control in the future.


Assuntos
Humanos , Entamoeba histolytica/fisiologia , Trofozoítos/fisiologia , Lactobacillus/fisiologia , Técnicas In Vitro , Probióticos/farmacologia
3.
PLoS One ; 8(7): e68202, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23874540

RESUMO

BACKGROUND: Entamoeba histolytica is the causative agent of amebiasis, a disease that is a major source of morbidity and mortality in the developing world. MicroRNAs (miRNAs) are a large group of non-coding RNAs that play important roles in regulating gene expression and protein translation in animals. Genome-wide identification of miRNAs is a critical step to facilitating our understanding of genome organization, genome biology, evolution, and post-transcriptional regulation. METHODOLOGY/PRINCIPAL FINDINGS: We sequenced a small RNA library prepared from a culture of trophozoites of Entamoeba histolytica Strain HM1-IMSS using a deep DNA sequencing approach. Deep sequencing yielded 16 million high-quality short sequence reads containing a total of 5 million non-redundant sequence reads. Based on a bioinformatics pipeline, we found that only 0.5% of these non-redundant small RNA reads were a perfect match with the drafted E. histolytica genome. We did not find miRNA homologs in plant or animal miRNAs. We discovered 199 new potential Entamoeba histolytica miRNAs. The expression and sequence of these Ehi-miRNAs were further validated through microarray by µParaflo Microfluidic Biochip Technology. Ten potential miRNAs were additionally confirmed by real time RT-PCR analysis. Prediction of target genes matched 32 known genes and 34 hypothetical genes. CONCLUSIONS/SIGNIFICANCE: These results show that there is a number of regulatory miRNAs in Entamoeba histolytica. The collection of miRNAs in this parasite could be used as a new platform to study genomic structure, gene regulation and networks, development, and host-parasite interactions.


Assuntos
Entamoeba histolytica/genética , MicroRNAs/genética , Análise por Conglomerados , Bases de Dados Genéticas , Genes de Protozoários/genética , MicroRNAs/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Reação em Cadeia da Polimerase em Tempo Real , Reprodutibilidade dos Testes , Análise de Sequência de RNA , Trofozoítos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...