Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Genes Brain Behav ; 22(4): e12849, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37328946

RESUMO

Relationships between novel phenotypic behaviors and specific genetic alterations are often discovered using target-specific, directed mutagenesis or phenotypic selection following chemical mutagenesis. An alternative approach is to exploit deficiencies in DNA repair pathways that maintain genetic integrity in response to spontaneously induced damage. Mice deficient in the DNA glycosylase NEIL1 show elevated spontaneous mutations, which arise from translesion DNA synthesis past oxidatively induced base damage. Several litters of Neil1 knockout mice included animals that were distinguished by their backwards-walking behavior in open-field environments, while maintaining frantic forward movements in their home cage environment. Other phenotypic manifestations included swim test failures, head tilting and circling. Mapping of the mutation that conferred these behaviors showed the introduction of a stop codon at amino acid 4 of the Ush1g gene. Ush1gbw/bw null mice displayed auditory and vestibular defects that are commonly seen with mutations affecting inner-ear hair-cell function, including a complete lack of auditory brainstem responses and vestibular-evoked potentials. As in other Usher syndrome type I mutant mouse lines, hair cell phenotypes included disorganized and split hair bundles, as well as altered distribution of proteins for stereocilia that localize to the tips of row 1 or row 2. Disruption to the bundle and kinocilium displacement suggested that USH1G is essential for forming the hair cell's kinocilial links. Consistent with other Usher type 1 models, Ush1gbw/bw mice had no substantial retinal degeneration compared with Ush1gbw /+ controls. In contrast to previously described Ush1g alleles, this new allele provides the first knockout model for this gene.


Assuntos
DNA Glicosilases , Síndromes de Usher , Camundongos , Animais , Alelos , Síndromes de Usher/genética , Mutação , Fenótipo , DNA Glicosilases/genética
2.
J Cell Sci ; 136(10)2023 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-37096733

RESUMO

GIPC3 has been implicated in auditory function. Here, we establish that GIPC3 is initially localized to the cytoplasm of inner and outer hair cells of the cochlea and then is increasingly concentrated in cuticular plates and at cell junctions during postnatal development. Early postnatal Gipc3KO/KO mice had mostly normal mechanotransduction currents, but had no auditory brainstem response at 1 month of age. Cuticular plates of Gipc3KO/KO hair cells did not flatten during development as did those of controls; moreover, hair bundles were squeezed along the cochlear axis in mutant hair cells. Junctions between inner hair cells and adjacent inner phalangeal cells were also severely disrupted in Gipc3KO/KO cochleas. GIPC3 bound directly to MYO6, and the loss of MYO6 led to altered distribution of GIPC3. Immunoaffinity purification of GIPC3 from chicken inner ear extracts identified co-precipitating proteins associated with adherens junctions, intermediate filament networks and the cuticular plate. Several of immunoprecipitated proteins contained GIPC family consensus PDZ-binding motifs (PBMs), including MYO18A, which bound directly to the PDZ domain of GIPC3. We propose that GIPC3 and MYO6 couple to PBMs of cytoskeletal and cell junction proteins to shape the cuticular plate.


Assuntos
Mecanotransdução Celular , Domínios PDZ , Camundongos , Animais , Células Ciliadas Auditivas Internas/metabolismo , Citoesqueleto/metabolismo , Células Ciliadas Auditivas Externas/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Miosinas/genética , Miosinas/metabolismo
3.
PLoS Biol ; 21(4): e3001964, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37011103

RESUMO

Assembly of the hair bundle, the sensory organelle of the inner ear, depends on differential growth of actin-based stereocilia. Separate rows of stereocilia, labeled 1 through 3 from tallest to shortest, lengthen or shorten during discrete time intervals during development. We used lattice structured illumination microscopy and surface rendering to measure dimensions of stereocilia from mouse apical inner hair cells during early postnatal development; these measurements revealed a sharp transition at postnatal day 8 between stage III (row 1 and 2 widening; row 2 shortening) and stage IV (final row 1 lengthening and widening). Tip proteins that determine row 1 lengthening did not accumulate simultaneously during stages III and IV; while the actin-bundling protein EPS8 peaked at the end of stage III, GNAI3 peaked several days later-in early stage IV-and GPSM2 peaked near the end of stage IV. To establish the contributions of key macromolecular assemblies to bundle structure, we examined mouse mutants that eliminated tip links (Cdh23v2J or Pcdh15av3J), transduction channels (TmieKO), or the row 1 tip complex (Myo15ash2). Cdh23v2J/v2J and Pcdh15av3J/av3J bundles had adjacent stereocilia in the same row that were not matched in length, revealing that a major role of these cadherins is to synchronize lengths of side-by-side stereocilia. Use of the tip-link mutants also allowed us to distinguish the role of transduction from effects of transduction proteins themselves. While levels of GNAI3 and GPSM2, which stimulate stereocilia elongation, were greatly attenuated at the tips of TmieKO/KO row 1 stereocilia, they accumulated normally in Cdh23v2J/v2J and Pcdh15av3J/av3J stereocilia. These results reinforced the suggestion that the transduction proteins themselves facilitate localization of proteins in the row 1 complex. By contrast, EPS8 concentrates at tips of all TmieKO/KO, Cdh23v2J/v2J, and Pcdh15av3J/av3J stereocilia, correlating with the less polarized distribution of stereocilia lengths in these bundles. These latter results indicated that in wild-type hair cells, the transduction complex prevents accumulation of EPS8 at the tips of shorter stereocilia, causing them to shrink (rows 2 and 3) or disappear (row 4 and microvilli). Reduced rhodamine-actin labeling at row 2 stereocilia tips of tip-link and transduction mutants suggests that transduction's role is to destabilize actin filaments there. These results suggest that regulation of stereocilia length occurs through EPS8 and that CDH23 and PCDH15 regulate stereocilia lengthening beyond their role in gating mechanotransduction channels.


Assuntos
Mecanotransdução Celular , Estereocílios , Camundongos , Animais , Estereocílios/metabolismo , Mecanotransdução Celular/fisiologia , Actinas/metabolismo , Células Ciliadas Auditivas/metabolismo , Proteínas dos Microfilamentos/metabolismo , Células Ciliadas Auditivas Internas/metabolismo , Caderinas/genética , Caderinas/metabolismo
4.
bioRxiv ; 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36909580

RESUMO

GIPC3 has been implicated in auditory function. Initially localized to the cytoplasm of inner and outer hair cells of the cochlea, GIPC3 increasingly concentrated in cuticular plates and at cell junctions during postnatal development. Early postnatal Gipc3 KO/KO mice had mostly normal mechanotransduction currents, but had no auditory brainstem response at one month of age. Cuticular plates of Gipc3 KO/KO hair cells did not flatten during development as did those of controls; moreover, hair bundles were squeezed along the cochlear axis in mutant hair cells. Junctions between inner hair cells and adjacent inner phalangeal cells were also severely disrupted in Gipc3 KO/KO cochleas. GIPC3 bound directly to MYO6, and the loss of MYO6 led to altered distribution of GIPC3. Immunoaffinity purification of GIPC3 from chicken inner ear extracts identified co-precipitating proteins associated with adherens junctions, intermediate filament networks, and the cuticular plate. Several of immunoprecipitated proteins contained GIPC-family consensus PDZ binding motifs (PBMs), including MYO18A, which binds directly to the PDZ domain of GIPC3. We propose that GIPC3 and MYO6 couple to PBMs of cytoskeletal and cell-junction proteins to shape the cuticular plate. Summary statement: The PDZ-domain protein GIPC3 couples the molecular motors MYO6 and MYO18A to actin cytoskeleton structures in hair cells. GIPC3 is necessary for shaping the hair cell’s cuticular plate and hence the arrangement of the stereocilia in the hair bundle.

5.
J Cell Biol ; 221(4)2022 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-35175278

RESUMO

The stereocilia rootlet is a key structure in vertebrate hair cells, anchoring stereocilia firmly into the cell's cuticular plate and protecting them from overstimulation. Using superresolution microscopy, we show that the ankyrin-repeat protein ANKRD24 concentrates at the stereocilia insertion point, forming a ring at the junction between the lower and upper rootlets. Annular ANKRD24 continues into the lower rootlet, where it surrounds and binds TRIOBP-5, which itself bundles rootlet F-actin. TRIOBP-5 is mislocalized in Ankrd24KO/KO hair cells, and ANKRD24 no longer localizes with rootlets in mice lacking TRIOBP-5; exogenous DsRed-TRIOBP-5 restores endogenous ANKRD24 to rootlets in these mice. Ankrd24KO/KO mice show progressive hearing loss and diminished recovery of auditory function after noise damage, as well as increased susceptibility to overstimulation of the hair bundle. We propose that ANKRD24 bridges the apical plasma membrane with the lower rootlet, maintaining a normal distribution of TRIOBP-5. Together with TRIOBP-5, ANKRD24 organizes rootlets to enable hearing with long-term resilience.


Assuntos
Proteínas dos Microfilamentos/metabolismo , Proteínas Nucleares/metabolismo , Estereocílios/metabolismo , Animais , Membrana Celular/metabolismo , Citoplasma/metabolismo , Células HEK293 , Células Ciliadas Auditivas/metabolismo , Células Ciliadas Auditivas/patologia , Células HeLa , Perda Auditiva/patologia , Humanos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Nucleares/química , Agregados Proteicos , Ligação Proteica , Domínios Proteicos , Estereocílios/ultraestrutura
6.
Mol Biol Cell ; 33(4): br6, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35044843

RESUMO

Brain-specific angiogenesis inhibitor 1-associated protein 2-like protein 2 (BAIAP2L2), a membrane-binding protein required for the maintenance of mechanotransduction in hair cells, is selectively retained at the tips of transducing stereocilia. BAIAP2L2 trafficked to stereocilia tips in the absence of EPS8, but EPS8 increased the efficiency of localization. A tripartite complex of BAIAP2L2, EPS8, and MYO15A formed efficiently in vitro, and these three proteins robustly targeted to filopodia tips when coexpressed in cultured cells. Mice lacking functional transduction channels no longer concentrated BAIAP2L2 at row 2 stereocilia tips, a result that was phenocopied by blocking channels with tubocurarine in cochlear explants. Transduction channels permit Ca2+ entry into stereocilia, and we found that membrane localization of BAIAP2L2 was enhanced in the presence of Ca2+. Finally, reduction of intracellular Ca2+ in hair cells using BAPTA-AM led to a loss of BAIAP2L2 at stereocilia tips. Taken together, our results show that a MYO15A-EPS8 complex transports BAIAP2L2 to stereocilia tips, and Ca2+ entry through open channels at row 2 tips retains BAIAP2L2 there.


Assuntos
Cálcio , Mecanotransdução Celular , Proteínas de Membrana , Estereocílios , Animais , Cálcio/metabolismo , Células Ciliadas Auditivas , Mecanotransdução Celular/fisiologia , Proteínas de Membrana/metabolismo , Camundongos
7.
Sci Rep ; 11(1): 23855, 2021 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-34903829

RESUMO

ATP-utilizing enzymes play key roles in hair bundles, the mechanically sensitive organelles of sensory hair cells in the inner ear. We used a fluorescent ATP analog, EDA-ATP-Cy3 (Cy3-ATP), to label ATP-binding proteins in two different preparations of unfixed hair-cell stereocilia of the mouse. In the first preparation, we lightly permeabilized dissected cochleas, then labeled them with Cy3-ATP. Hair cells and their stereocilia remained intact, and stereocilia tips in rows 1 and 2 were labeled particularly strongly with Cy3-ATP. In many cases, vanadate (Vi) traps nucleotides at the active site of myosin isoforms and presents nucleotide dissociation. Co-application with Vi enhanced the tip labeling, which is consistent with myosin isoforms being responsible. By contrast, the actin polymerization inhibitors latrunculin A and cytochalasin D had no effect, suggesting that actin turnover at stereocilia tips was not involved. Cy3-ATP labeling was substantially reduced-but did not disappear altogether-in mutant cochleas lacking MYO15A; by contrast, labeling remained robust in cochleas lacking MYO7A. In the second preparation, used to quantify Cy3-ATP labeling, we labeled vestibular stereocilia that had been adsorbed to glass, which demonstrated that tip labeling was higher in longer stereocilia. We found that tip signal was reduced by ~ 50% in Myo15ash2/sh2 stereocilia as compared to Myo15ash2/+stereocilia. These results suggest that MYO15A accounts for a substantial fraction of the Cy3-ATP tip labeling in vestibular hair cells, and so this novel preparation could be utilized to examine the control of MYO15A ATPase activity in situ.


Assuntos
Trifosfato de Adenosina/análogos & derivados , Células Ciliadas Auditivas/metabolismo , Indóis/metabolismo , Actinas/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Células Cultivadas , Citocalasina D/farmacologia , Células Ciliadas Auditivas/citologia , Células Ciliadas Auditivas/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Miosinas/metabolismo , Estereocílios/metabolismo , Estereocílios/ultraestrutura , Tiazolidinas/farmacologia , Vanadatos/farmacologia
8.
J Physiol ; 599(4): 1173-1198, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33151556

RESUMO

KEY POINTS: Mechanoelectrical transduction at auditory hair cells requires highly specialized stereociliary bundles that project from their apical surface, forming a characteristic graded 'staircase' structure. The morphogenesis and maintenance of these stereociliary bundles is a tightly regulated process requiring the involvement of several actin-binding proteins, many of which are still unidentified. We identify a new stereociliary protein, the I-BAR protein BAIAP2L2, which localizes to the tips of the shorter transducing stereocilia in both inner and outer hair cells (IHCs and OHCs). We find that Baiap2l2 deficient mice lose their second and third rows of stereocilia, their mechanoelectrical transducer current, and develop progressive hearing loss, becoming deaf by 8 months of age. We demonstrate that BAIAP2L2 localization to stereocilia tips is dependent on the motor protein MYO15A and its cargo EPS8. We propose that BAIAP2L2 is a new key protein required for the maintenance of the transducing stereocilia in mature cochlear hair cells. ABSTRACT: The transduction of sound waves into electrical signals depends upon mechanosensitive stereociliary bundles that project from the apical surface of hair cells within the cochlea. The height and width of these actin-based stereocilia is tightly regulated throughout life to establish and maintain their characteristic staircase-like structure, which is essential for normal mechanoelectrical transduction. Here, we show that BAIAP2L2, a member of the I-BAR protein family, is a newly identified hair bundle protein that is localized to the tips of the shorter rows of transducing stereocilia in mouse cochlear hair cells. BAIAP2L2 was detected by immunohistochemistry from postnatal day 2.5 (P2.5) throughout adulthood. In Baiap2l2 deficient mice, outer hair cells (OHCs), but not inner hair cells (IHCs), began to lose their third row of stereocilia and showed a reduction in the size of the mechanoelectrical transducer current from just after P9. Over the following post-hearing weeks, the ordered staircase structure of the bundle progressively deteriorates, such that, by 8 months of age, both OHCs and IHCs of Baiap2l2 deficient mice have lost most of the second and third rows of stereocilia and become deaf. We also found that BAIAP2L2 interacts with other key stereociliary proteins involved in normal hair bundle morphogenesis, such as CDC42, RAC1, EPS8 and ESPNL. Furthermore, we show that BAIAP2L2 localization to the stereocilia tips depends on the motor protein MYO15A and its cargo EPS8. We propose that BAIAP2L2 is key to maintenance of the normal actin structure of the transducing stereocilia in mature mouse cochlear hair cells.


Assuntos
Surdez , Proteínas de Membrana , Estereocílios , Animais , Surdez/genética , Células Ciliadas Auditivas Internas , Células Ciliadas Auditivas Externas , Proteínas de Membrana/genética , Camundongos , Proteínas dos Microfilamentos
9.
Hum Genet ; 139(10): 1315-1323, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32382995

RESUMO

We present detailed comparative analyses to assess population-level differences in patterns of genetic deafness between European/American and Japanese cohorts with non-syndromic hearing loss. One thousand eighty-three audiometric test results (921 European/American and 162 Japanese) from members of 168 families (48 European/American and 120 Japanese) with non-syndromic hearing loss secondary to pathogenic variants in one of three genes (KCNQ4, TECTA, WFS1) were studied. Audioprofile characteristics, specific mutation types, and protein domains were considered in the comparative analyses. Our findings support differences in audioprofiles driven by both mutation type (non-truncating vs. truncating) and ethnic background. The former finding confirms data that ascribe a phenotypic consequence to different mutation types in KCNQ4; the latter finding suggests that there are ethnic-specific effects (genetic and/or environmental) that impact gene-specific audioprofiles for TECTA and WFS1. Identifying the drivers of ethnic differences will refine our understanding of phenotype-genotype relationships and the biology of hearing and deafness.


Assuntos
Proteínas da Matriz Extracelular/genética , Genótipo , Perda Auditiva Neurossensorial/genética , Canais de Potássio KCNQ/genética , Proteínas de Membrana/genética , Mutação , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Povo Asiático , Audiometria , Estudos de Casos e Controles , Criança , Pré-Escolar , Feminino , Proteínas Ligadas por GPI/genética , Expressão Gênica , Estudos de Associação Genética , Perda Auditiva Neurossensorial/diagnóstico , Perda Auditiva Neurossensorial/etnologia , Perda Auditiva Neurossensorial/fisiopatologia , Humanos , Lactente , Recém-Nascido , Japão , Masculino , Pessoa de Meia-Idade , Linhagem , Fenótipo , Estados Unidos , População Branca
10.
J Struct Biol ; 210(1): 107461, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-31962158

RESUMO

Electron cryo-tomography allows for high-resolution imaging of stereocilia in their native state. Because their actin filaments have a higher degree of order, we imaged stereocilia from mice lacking the actin crosslinker plastin 1 (PLS1). We found that while stereocilia actin filaments run 13 nm apart in parallel for long distances, there were gaps of significant size that were stochastically distributed throughout the actin core. Actin crosslinkers were distributed through the stereocilium, but did not occupy all possible binding sites. At stereocilia tips, protein density extended beyond actin filaments, especially on the side of the tip where a tip link is expected to anchor. Along the shaft, repeating density was observed that corresponds to actin-to-membrane connectors. In the taper region, most actin filaments terminated near the plasma membrane. The remaining filaments twisted together to make a tighter bundle than was present in the shaft region; the spacing between them decreased from 13 nm to 9 nm, and the apparent filament diameter decreased from 6.4 to 4.8 nm. Our models illustrate detailed features of distinct structural domains that are present within the stereocilium.


Assuntos
Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Tomografia com Microscopia Eletrônica/métodos , Células Ciliadas Vestibulares/metabolismo , Glicoproteínas de Membrana/metabolismo , Proteínas dos Microfilamentos/metabolismo , Citoesqueleto de Actina/genética , Animais , Glicoproteínas de Membrana/genética , Camundongos , Proteínas dos Microfilamentos/genética
11.
Curr Biol ; 30(3): 442-454.e7, 2020 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-31902726

RESUMO

Actin-rich structures, like stereocilia and microvilli, are assembled with precise control of length, diameter, and relative spacing. By quantifying actin-core dimensions of stereocilia from phalloidin-labeled mouse cochleas, we demonstrated that inner hair cell stereocilia developed in specific stages, where a widening phase is sandwiched between two lengthening phases. Moreover, widening of the second-tallest stereocilia rank (row 2) occurred simultaneously with the appearance of mechanotransduction. Correspondingly, Tmc1KO/KO;Tmc2KO/KO or TmieKO/KO hair cells, which lack transduction, have significantly altered stereocilia lengths and diameters, including a narrowed row 2. EPS8 and the short splice isoform of MYO15A, identity markers for mature row 1 (the tallest row), lost their row exclusivity in transduction mutants. GNAI3, another member of the mature row 1 complex, accumulated at mutant row 1 tips at considerably lower levels than in wild-type bundles. Alterations in stereocilia dimensions and in EPS8 distribution seen in transduction mutants were mimicked by block of transduction channels of cochlear explants in culture. In addition, proteins normally concentrated at mature row 2 tips were also distributed differently in transduction mutants; the heterodimeric capping protein subunit CAPZB and its partner TWF2 never concentrated at row 2 tips like they do in wild-type bundles. The altered distribution of marker proteins in transduction mutants was accompanied by increased variability in stereocilia length. Transduction channels thus specify and maintain row identity, control addition of new actin filaments to increase stereocilia diameter, and coordinate stereocilia height within rows.


Assuntos
Células Ciliadas Auditivas Internas/fisiologia , Mecanotransdução Celular/genética , Estereocílios/fisiologia , Animais , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL
12.
Int J Mol Sci ; 21(1)2020 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-31947734

RESUMO

Sensory hair cells of the inner ear rely on the hair bundle, a cluster of actin-filled stereocilia, to transduce auditory and vestibular stimuli into electrical impulses. Because they are long and thin projections, stereocilia are most prone to damage at the point where they insert into the hair cell's soma. Moreover, this is the site of stereocilia pivoting, the mechanical movement that induces transduction, which additionally weakens this area mechanically. To bolster this fragile area, hair cells construct a dense core called the rootlet at the base of each stereocilium, which extends down into the actin meshwork of the cuticular plate and firmly anchors the stereocilium. Rootlets are constructed with tightly packed actin filaments that extend from stereocilia actin filaments which are wrapped with TRIOBP; in addition, many other proteins contribute to the rootlet and its associated structures. Rootlets allow stereocilia to sustain innumerable deflections over their lifetimes and exemplify the unique manner in which sensory hair cells exploit actin and its associated proteins to carry out the function of mechanotransduction.


Assuntos
Actinas/análise , Células Ciliadas Auditivas/citologia , Células Ciliadas Vestibulares/citologia , Estereocílios/ultraestrutura , Actinas/metabolismo , Animais , Células Ciliadas Auditivas/química , Células Ciliadas Auditivas/metabolismo , Células Ciliadas Auditivas/ultraestrutura , Células Ciliadas Vestibulares/química , Células Ciliadas Vestibulares/metabolismo , Células Ciliadas Vestibulares/ultraestrutura , Audição , Humanos , Mecanotransdução Celular , Equilíbrio Postural , Estereocílios/química , Estereocílios/metabolismo
13.
Elife ; 82019 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-31682227

RESUMO

Hearing and balance rely on small sensory hair cells that reside in the inner ear. To explore dynamic changes in the abundant proteins present in differentiating hair cells, we used nanoliter-scale shotgun mass spectrometry of single cells, each ~1 picoliter, from utricles of embryonic day 15 chickens. We identified unique constellations of proteins or protein groups from presumptive hair cells and from progenitor cells. The single-cell proteomes enabled the de novo reconstruction of a developmental trajectory using protein expression levels, revealing proteins that greatly increased in expression during differentiation of hair cells (e.g., OCM, CRABP1, GPX2, AK1, GSTO1) and those that decreased during differentiation (e.g., TMSB4X, AGR3). Complementary single-cell transcriptome profiling showed corresponding changes in mRNA during maturation of hair cells. Single-cell proteomics data thus can be mined to reveal features of cellular development that may be missed with transcriptomics.


Assuntos
Diferenciação Celular , Regulação da Expressão Gênica no Desenvolvimento , Células Ciliadas Auditivas/fisiologia , Células Ciliadas Vestibulares/fisiologia , Proteoma/análise , Animais , Embrião de Galinha , Expressão Gênica , Células Ciliadas Auditivas/química , Células Ciliadas Vestibulares/química , Espectrometria de Massas , Proteômica
14.
J Struct Biol ; 206(2): 149-155, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30822456

RESUMO

High-resolution imaging of hair-cell stereocilia of the inner ear has contributed substantially to our understanding of auditory and vestibular function. To provide three-dimensional views of the structure of stereocilia cytoskeleton and membranes, we developed a method for rapidly freezing unfixed stereocilia on electron microscopy grids, which allowed subsequent 3D imaging by electron cryo-tomography. Structures of stereocilia tips, shafts, and tapers were revealed, demonstrating that the actin paracrystal was not perfectly ordered. This sample-preparation and imaging procedure will allow for examination of structural features of stereocilia in a near-native state.


Assuntos
Temperatura Baixa , Tomografia com Microscopia Eletrônica/métodos , Células Ciliadas Vestibulares/ultraestrutura , Estereocílios/ultraestrutura , Animais , Camundongos
15.
Artigo em Inglês | MEDLINE | ID: mdl-29844221

RESUMO

The vertebrate hair bundle, responsible for transduction of mechanical signals into receptor potentials in sensory hair cells, is an evolutionary masterpiece. Composed of actin-filled stereocilia of precisely regulated length, width, and number, the structure of the hair bundle is optimized for sensing auditory and vestibular stimuli. Recent developments in identifying the lipids and proteins constituting the hair bundle, obtained through genetics, biochemistry, and imaging, now permit a description of the consensus composition of vestibular bundles of mouse, rat, and chick.


Assuntos
Células Ciliadas Auditivas/fisiologia , Vestíbulo do Labirinto/fisiologia , Animais , Galinhas , Camundongos , Proteoma , Ratos
16.
Neuron ; 99(4): 628-629, 2018 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-30138584

RESUMO

The identity of the inner ear's transduction channel has bedeviled auditory neuroscientists for decades. In this issue of Neuron, Pan et al. (2018) report the most convincing evidence to date implicating the transmembrane channel-like (TMC) proteins as forming the pore of the transduction channel.


Assuntos
Orelha Interna , Mecanotransdução Celular , Animais , Cabelo , Células Ciliadas Auditivas , Vertebrados
17.
Sci Data ; 5: 180128, 2018 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-30015805

RESUMO

Hair cells of the inner ear undergo postnatal development that leads to formation of their sensory organelles, synaptic machinery, and in the case of cochlear outer hair cells, their electromotile mechanism. To examine how the proteome changes over development from postnatal days 0 through 7, we isolated pools of 5000 Pou4f3-Gfp positive or negative cells from the cochlea or utricles; these cell pools were analysed by data-dependent and data-independent acquisition (DDA and DIA) mass spectrometry. DDA data were used to generate spectral libraries, which enabled identification and accurate quantitation of specific proteins using the DIA datasets. DIA measurements were extremely sensitive; we were able to detect proteins present at less than one part in 100,000 from only 312 hair cells. The DDA and DIA datasets will be valuable for accurately quantifying proteins in hair cells and non-hair cells over this developmental window.


Assuntos
Células Ciliadas Auditivas/metabolismo , Células Ciliadas Vestibulares/metabolismo , Proteoma , Animais , Cóclea/citologia , Cóclea/crescimento & desenvolvimento , Cóclea/metabolismo , Espectrometria de Massas , Camundongos
18.
Cell Rep ; 23(10): 2901-2914.e13, 2018 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-29874578

RESUMO

Protruding from the apical surface of inner ear sensory cells, hair bundles carry out mechanotransduction. Bundle growth involves sequential and overlapping cellular processes, which are concealed within gene expression profiles of individual cells. To dissect such processes, we developed CellTrails, a tool for uncovering, analyzing, and visualizing single-cell gene-expression dynamics. Utilizing quantitative gene-expression data for key bundle proteins from single cells of the developing chick utricle, we reconstructed de novo a bifurcating trajectory that spanned from progenitor cells to mature striolar and extrastriolar hair cells. Extraction and alignment of developmental trails and association of pseudotime with bundle length measurements linked expression dynamics of individual genes with bundle growth stages. Differential trail analysis revealed high-resolution dynamics of transcripts that control striolar and extrastriolar bundle development, including those that encode proteins that regulate [Ca2+]i or mediate crosslinking and lengthening of actin filaments.


Assuntos
Células Ciliadas Auditivas/citologia , Morfogênese/genética , Software , Transcrição Gênica , Animais , Animais Recém-Nascidos , Cálcio/metabolismo , Diferenciação Celular , Galinhas , Regulação da Expressão Gênica no Desenvolvimento , Células Ciliadas Auditivas/ultraestrutura , Camundongos , Sáculo e Utrículo/citologia , Fatores de Tempo
19.
Front Cell Neurosci ; 12: 41, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29515374

RESUMO

Hair cells of the inner ear transduce mechanical stimuli like sound or head movements into electrical signals, which are propagated to the central nervous system. The hair-cell mechanotransduction channel remains unidentified. We tested whether three transient receptor channel (TRP) family members, TRPV6, TRPM6 and TRPM7, were necessary for transduction. TRPV6 interacted with USH1C (harmonin), a scaffolding protein that participates in transduction. Using a cysteine-substitution knock-in mouse line and methanethiosulfonate (MTS) reagents selective for this allele, we found that inhibition of TRPV6 had no effect on transduction in mouse cochlear hair cells. TRPM6 and TRPM7 each interacted with the tip-link component PCDH15 in cultured eukaryotic cells, which suggested they might be part of the transduction complex. Cochlear hair cell transduction was not affected by manipulations of Mg2+, however, which normally perturbs TRPM6 and TRPM7. To definitively examine the role of these two channels in transduction, we showed that deletion of either or both of their genes selectively in hair cells had no effect on auditory function. We suggest that TRPV6, TRPM6 and TRPM7 are unlikely to be the pore-forming subunit of the hair-cell transduction channel.

20.
J Neurosci ; 38(4): 843-857, 2018 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-29222402

RESUMO

Sensory hair cells require control of physical properties of their apical plasma membranes for normal development and function. Members of the ADP-ribosylation factor (ARF) small GTPase family regulate membrane trafficking and cytoskeletal assembly in many cells. We identified ELMO domain-containing protein 1 (ELMOD1), a guanine nucleoside triphosphatase activating protein (GAP) for ARF6, as the most highly enriched ARF regulator in hair cells. To characterize ELMOD1 control of trafficking, we analyzed mice of both sexes from a strain lacking functional ELMOD1 [roundabout (rda)]. In rda/rda mice, cuticular plates of utricle hair cells initially formed normally, then degenerated after postnatal day 5; large numbers of vesicles invaded the compromised cuticular plate. Hair bundles initially developed normally, but the cell's apical membrane lifted away from the cuticular plate, and stereocilia elongated and fused. Membrane trafficking in type I hair cells, measured by FM1-43 dye labeling, was altered in rda/rda mice. Consistent with the proposed GAP role for ELMOD1, the ARF6 GTP/GDP ratio was significantly elevated in rda/rda utricles compared with controls, and the level of ARF6-GTP was correlated with the severity of the rda/rda phenotype. These results suggest that conversion of ARF6 to its GDP-bound form is necessary for final stabilization of the hair bundle.SIGNIFICANCE STATEMENT Assembly of the mechanically sensitive hair bundle of sensory hair cells requires growth and reorganization of apical actin and membrane structures. Hair bundles and apical membranes in mice with mutations in the Elmod1 gene degenerate after formation, suggesting that the ELMOD1 protein stabilizes these structures. We show that ELMOD1 is a GTPase-activating protein in hair cells for the small GTP-binding protein ARF6, known to participate in actin assembly and membrane trafficking. We propose that conversion of ARF6 into the GDP-bound form in the apical domain of hair cells is essential for stabilizing apical actin structures like the hair bundle and ensuring that the apical membrane forms appropriately around the stereocilia.


Assuntos
Fatores de Ribosilação do ADP/metabolismo , Proteínas Ativadoras de GTPase/metabolismo , Células Ciliadas Vestibulares/metabolismo , Fator 6 de Ribosilação do ADP , Animais , Feminino , Guanosina Trifosfato/metabolismo , Células Ciliadas Vestibulares/ultraestrutura , Hidrólise , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Transporte Proteico , Estereocílios/metabolismo , Estereocílios/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...