Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomolecules ; 14(4)2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38672487

RESUMO

Tuberculosis (TB) is the leading global cause of death f rom an infectious bacterial agent. Therefore, limiting its epidemic spread is a pressing global health priority. The chaperone-like protein HtpG of M. tuberculosis (Mtb) is a large dimeric and multi-domain protein with a key role in Mtb pathogenesis and promising antigenic properties. This dual role, likely associated with the ability of Heat Shock proteins to act both intra- and extra-cellularly, makes HtpG highly exploitable both for drug and vaccine development. This review aims to gather the latest updates in HtpG structure and biological function, with HtpG operating in conjunction with a large number of chaperone molecules of Mtb. Altogether, these molecules help Mtb recovery after exposure to host-like stress by assisting the whole path of protein folding rescue, from the solubilisation of aggregated proteins to their refolding. Also, we highlight the role of structural biology in the development of safer and more effective subunit antigens. The larger availability of structural information on Mtb antigens and a better understanding of the host immune response to TB infection will aid the acceleration of TB vaccine development.


Assuntos
Antígenos de Bactérias , Proteínas de Bactérias , Mycobacterium tuberculosis , Vacinas contra a Tuberculose , Fatores de Virulência , Mycobacterium tuberculosis/imunologia , Antígenos de Bactérias/imunologia , Antígenos de Bactérias/química , Fatores de Virulência/imunologia , Fatores de Virulência/química , Humanos , Vacinas contra a Tuberculose/imunologia , Proteínas de Bactérias/imunologia , Proteínas de Bactérias/química , Tuberculose/imunologia , Tuberculose/prevenção & controle , Tuberculose/microbiologia , Animais , Chaperonas Moleculares/imunologia , Chaperonas Moleculares/química , Chaperonas Moleculares/metabolismo
2.
Cells ; 12(2)2023 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-36672252

RESUMO

Tuberculosis (TB) is still the leading global cause of death from an infectious bacterial agent. Limiting tuberculosis epidemic spread is therefore an urgent global public health priority. As stated by the WHO, to stop the spread of the disease we need a new vaccine, with better coverage than the current Mycobacterium bovis BCG vaccine. This vaccine was first used in 1921 and, since then, there are still no new licensed tuberculosis vaccines. However, there is extremely active research in the field, with a steep acceleration in the past decades, due to the advance of technologies and more rational vaccine design strategies. This review aims to gather latest updates in vaccine development in the various clinical phases and to underline the contribution of Structural Vaccinology (SV) to the development of safer and effective antigens. In particular, SV and the development of vaccine adjuvants is making the use of subunit vaccines, which are the safest albeit the less antigenic ones, an achievable goal. Indeed, subunit vaccines overcome safety concerns but need to be rationally re-engineered to enhance their immunostimulating effects. The larger availability of antigen structural information as well as a better understanding of the complex host immune response to TB infection is a strong premise for a further acceleration of TB vaccine development.


Assuntos
Mycobacterium tuberculosis , Vacinas contra a Tuberculose , Tuberculose , Humanos , Tuberculose/prevenção & controle , Vacina BCG , Vacinas de Subunidades Antigênicas
3.
Front Mol Biosci ; 9: 964645, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36032688

RESUMO

Vaccine development against Tuberculosis is a strong need, given the low efficacy of the sole vaccine hitherto used, the Bacillus Calmette-Guérin (BCG) vaccine. The chaperone-like protein HtpGMtb of M. tuberculosis is a large dimeric and multi-domain protein with promising antigenic properties. We here used biophysical and biochemical studies to improve our understanding of the structural basis of HtpGMtb functional role and immunogenicity, a precious information to engineer improved antigens. We showed that HtpGMtb is a dimeric nucleotide-binding protein and identified the dimerisation interface on the C-terminal domain of the protein. We also showed that the most immunoreactive regions of the molecule are located on the C-terminal and middle domains of the protein, whereas no role is played by the catalytic N-terminal domain in the elicitation of the immune response. Based on these observations, we experimentally validated our predictions in mice, using a plethora of immunological assays. As an outcome, we designed vaccine antigens with enhanced biophysical properties and ease of production, albeit conserved or enhanced antigenic properties. Our results prove the efficacy of structural vaccinology approaches in improving our understanding of the structural basis of immunogenicity, a precious information to engineer more stable, homogeneous, efficiently produced, and effective vaccine antigens.

4.
Int J Mol Sci ; 23(10)2022 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-35628409

RESUMO

Coronaviruses, including SARS-CoV-2 (the etiological agent of the current COVID-19 pandemic), rely on the surface spike glycoprotein to access the host cells, mainly through the interaction of their receptor-binding domain (RBD) with the human angiotensin-converting enzyme 2 (ACE2). Therefore, molecular entities able to interfere with the binding of the SARS-CoV-2 spike protein to ACE2 have great potential to inhibit viral entry. Starting from the available structural data on the interaction between SARS-CoV-2 spike protein and the host ACE2 receptor, we engineered a set of soluble and stable spike interactors, here denoted as S-plugs. Starting from the prototype S-plug, we adopted a computational approach by combining stability prediction, associated to single-point mutations, with molecular dynamics to enhance both S-plug thermostability and binding affinity to the spike protein. The best developed molecule, S-plug3, possesses a highly stable α-helical con-formation (with melting temperature Tm of 54 °C) and can interact with the spike RBD and S1 domains with similar low nanomolar affinities. Importantly, S-plug3 exposes the spike RBD to almost the same interface as the human ACE2 receptor, aimed at the recognition of all ACE2-accessing coronaviruses. Consistently, S-plug3 preserves a low nanomolar dissociation constant with the delta B.1.617.2 variant of SARS-CoV-2 spike protein (KD = 29.2 ± 0.6 nM). Taken together, we provide valid starting data for the development of therapeutical and diagnostic tools against coronaviruses accessing through ACE2.


Assuntos
Enzima de Conversão de Angiotensina 2 , COVID-19 , Enzima de Conversão de Angiotensina 2/genética , Humanos , Glicoproteínas de Membrana/metabolismo , Pandemias , Peptidil Dipeptidase A/metabolismo , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Proteínas do Envelope Viral/química
5.
Int J Biol Macromol ; 182: 1455-1462, 2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-34015405

RESUMO

CD55 is a major regulator of the complement system, a complex network of proteins that cooperate to clear tissue and blood pathogens from the organism. Indeed, overexpression of CD55 is associated with many diseases and is connected to the resistance mechanisms exhibited by several cancers towards immunotherapy approaches. High level of CD55 expression on tumour cells renders it a good target for both imaging and immunotherapy. Indeed, a conceivable approach to tackle disease is to interfere with CD55-mediated complement regulation with the use of CD55-targeting antibodies. However, the large size and poor tissue penetration together with to the high costs of antibodies often limits their widespread therapeutic use. Here, we employed bioinformatic and chemical approaches to design and synthesize molecules of small dimensions able to mimic a CD55 blocking antibody. As a result, a bicyclic peptide, named as miniAB55, proved to bind CD55 with nanomolar affinity. This molecule represents an attracting chemical scaffold for CD55-directed diagnostic tools in diseases associated with CD55 overproduction. To further support the applicative potential of miniAB55, we prove that the miniAB55 binds CD55 on the same region involved in inactivation of the complement C3 and C5 convertases, thus opening promising scenarios for the development of complement-modulating tools.


Assuntos
Anticorpos/farmacologia , Antígenos CD55/imunologia , Miniaturização , Peptídeos Cíclicos/química , Sequência de Aminoácidos , Sítios de Ligação de Anticorpos/imunologia , Antígenos CD55/química , Ciclização , Humanos , Cinética , Modelos Moleculares , Simulação de Acoplamento Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...