Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
FASEB J ; 32(2): 681-692, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-28970249

RESUMO

PI-PLCß1 is involved in cell proliferation, differentiation, and myelodysplastic syndrome (MDS) pathogenesis. Moreover, the increased activity of PI-PLCß1 reduces the expression of PKC-α, which, in turn, delays the cell proliferation and is linked to erythropoiesis. Lenalidomide is currently used in low-risk patients with MDS and del(5q), where it can suppress the del(5q) clone and restore normal erythropoiesis. In this study, we analyzed the effect of lenalidomide on 16 patients with low-risk del(5q) MDS, as well as del(5q) and non-del(5q) hematopoietic cell lines, mainly focusing on erythropoiesis, cell cycle, and PI-PLCß1/PKC-α signaling. Overall, 11 patients were evaluated clinically, and 10 (90%) had favorable responses; the remaining case had a stable disease. At a molecular level, both responder patients and del(5q) cells showed a specific induction of erythropoiesis, with a reduced γ/ß-globin ratio, an increase in glycophorin A, and a nuclear translocation of PKC-α. Moreover, lenalidomide could induce a selective G0/G1 arrest of the cell cycle in del(5q) cells, slowing down the rate proliferation in those cells. Altogether, our results could not only better explain the role of PI-PLCß1/PKC-α signaling in erythropoiesis but also lead to a better comprehension of the lenalidomide effect on del(5q) MDS and pave the way to innovative, targeted therapies.-Poli, A., Ratti, S., Finelli, C., Mongiorgi, S., Clissa, C., Lonetti, A., Cappellini, A., Catozzi, A., Barraco, M., Suh, P.-G., Manzoli, L., McCubrey, J. A., Cocco, L., Follo, M. Y. Nuclear translocation of PKC-α is associated with cell cycle arrest and erythroid differentiation in myelodysplastic syndromes (MDSs).


Assuntos
Diferenciação Celular , Núcleo Celular/enzimologia , Células Eritroides/enzimologia , Eritropoese , Pontos de Checagem da Fase G1 do Ciclo Celular , Síndromes Mielodisplásicas/enzimologia , Proteína Quinase C-alfa/metabolismo , Transdução de Sinais , Transporte Ativo do Núcleo Celular , Idoso , Idoso de 80 Anos ou mais , Linhagem Celular , Núcleo Celular/genética , Núcleo Celular/patologia , Células Eritroides/patologia , Feminino , Humanos , Masculino , Síndromes Mielodisplásicas/genética , Síndromes Mielodisplásicas/patologia , Proteína Quinase C-alfa/genética , Fase de Repouso do Ciclo Celular
2.
Oncotarget ; 7(34): 55313-55327, 2016 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-27486815

RESUMO

The efficient treatment of hematological malignancies as Acute Myeloid Leukemia, myelofibrosis and Chronic Myeloid Leukemia, requires the elimination of cancer-initiating cells and the prevention of disease relapse through targeting pathways that stimulate generation and maintenance of these cells. In mammals, inhibition of Smoothened, the key mediator of the Hedgehog signaling pathway, reduces Chronic Myeloid Leukemia progression and propagation. These findings make Smo a candidate target to inhibit maintenance of leukemia-initiating cells. In Drosophila melanogaster the same pathway maintains the hematopoietic precursor cells of the lymph gland, the hematopoietic organ that develops in the larva. Using Drosophila as an in vivo model, we investigated the mode of action of PF-04449913, a small-molecule inhibitor of the human Smo protein. Drosophila larvae fed with PF-04449913 showed traits of altered hematopoietic homeostasis. These include the development of melanotic nodules, increase of circulating hemocytes, the size increase of the lymph gland and accelerated differentiation of blood cells likely due to the exit of multi-potent precursors from quiescence. Importantly, the Smo inhibition can lead to the complete loss of hematopoietic precursors. We conclude that PF-04449913 inhibits Drosophila Smo blocking the Hh signaling pathway and causing the loss of hematopoietic precursor cells. Interestingly, this is the effect expected in patients treated with PF-04449913: number decrease of cancer initiating cells in the bone marrow to reduce the risk of leukemia relapse. Altogether our results indicate that Drosophila comprises a model system for the in vivo study of molecules that target evolutionary conserved pathways implicated in human hematological malignancies.


Assuntos
Benzimidazóis/farmacologia , Células-Tronco Multipotentes/efeitos dos fármacos , Compostos de Fenilureia/farmacologia , Receptor Smoothened/antagonistas & inibidores , Animais , Diferenciação Celular/efeitos dos fármacos , Drosophila melanogaster , Homeostase/efeitos dos fármacos , Humanos
3.
Curr Pharm Des ; 22(16): 2349-57, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26960675

RESUMO

Myelodysplastic syndromes (MDS) are a heterogeneous group of hematologic diseases, mainly affecting the elderly, characterized by unilinear or multilinear peripheral cytopenia, bone marrow ineffective haemopoiesis, and a varying risk of progression to acute myeloid leukemia (AML). On the basis of the prognostic score systems currently used, MDS patients are generally classified as having higher risk (HR) or lower risk (LR) MDS. Two drugs, azacitidine (AZA) and decitabine (DAC), defined, because of their proven mechanism of action, as DNA methyltransferase inhibitors (DNMTIs), or hypomethylating agents (HMAs), have proven effective in improving peripheral cytopenias and quality of life, reducing or eliminating transfusion need, delaying leukemic evolution, and (only for AZA) prolonging overall survival (OS). HMAs are currently the first therapeutic choice for MDS patients who are not candidates for allogeneic hematopoietic stem cell transplantation (allo-HSCT). HMAs have also been used before and after allo-HSCT, but their role in this setting needs to be confirmed by larger studies. Although data from several clinical and biological studies might help to identify patients with a higher probability to respond to HMAs, to date this treatment should not be denied to any HR MDS patient. Several attempts have been made to combine HMAs with other therapeutic agents, and these results await confirmation by further studies.


Assuntos
Antimetabólitos Antineoplásicos/uso terapêutico , Azacitidina/análogos & derivados , Azacitidina/uso terapêutico , Síndromes Mielodisplásicas/tratamento farmacológico , Decitabina , Humanos
4.
BMC Biol ; 12: 12, 2014 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-24528630

RESUMO

BACKGROUND: The Drosophila abnormal wing discs (awd) belongs to a highly conserved family of genes implicated in metastasis suppression, metabolic homeostasis and epithelial morphogenesis. The cellular function of the mammalian members of this family, the Nm23 proteins, has not yet been clearly defined. Previous awd genetic analyses unraveled its endocytic role that is required for proper internalization of receptors controlling different signaling pathways. In this study, we analyzed the role of Awd in controlling Notch signaling during development. RESULTS: To study the awd gene function we used genetic mosaic approaches to obtain cells homozygous for a loss of function allele. In awd mutant follicle cells and wing disc cells, Notch accumulates in enlarged early endosomes, resulting in defective Notch signaling. Our results demonstrate that awd function is required before γ-secretase mediated cleavage since over-expression of the constitutively active form of the Notch receptor in awd mutant follicle cells allows rescue of the signaling. By using markers of different endosomal compartments we show that Notch receptor accumulates in early endosomes in awd mutant follicle cells. A trafficking assay in living wing discs also shows that Notch accumulates in early endosomes. Importantly, constitutively active Rab5 cannot rescue the awd phenotype, suggesting that awd is required for Rab5 function in early endosome maturation. CONCLUSIONS: In this report we demonstrate that awd is essential for Notch signaling via its endocytic role. In addition, we identify the endocytic step at which Awd function is required for Notch signaling and we obtain evidence indicating that Awd is necessary for Rab5 function. These findings provide new insights into the developmental and pathophysiological function of this important gene family.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Nucleosídeo NM23 Difosfato Quinases/genética , Núcleosídeo-Difosfato Quinase/metabolismo , Receptores Notch/metabolismo , Homologia de Sequência de Aminoácidos , Transdução de Sinais , Animais , Proliferação de Células , Células Clonais , Vesículas Citoplasmáticas , Drosophila melanogaster/genética , Drosophila melanogaster/crescimento & desenvolvimento , Endocitose , Endossomos/metabolismo , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Discos Imaginais/citologia , Larva/crescimento & desenvolvimento , Larva/metabolismo , Mutação/genética , Nucleosídeo NM23 Difosfato Quinases/metabolismo , Metástase Neoplásica , Folículo Ovariano/citologia , Folículo Ovariano/metabolismo , Transporte Proteico , Asas de Animais/citologia , Asas de Animais/metabolismo , Proteínas rab5 de Ligação ao GTP/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...