Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neuroscience ; 250: 786-97, 2013 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-23830907

RESUMO

Hydrogen sulfide (H2S) is a gasotransmitter endogenously generated from the metabolism of L-cysteine by action of two main enzymes called cystathionine ß-synthase (CBS) and cystathionine γ-lyase (CSE). This gas has been involved in the pain processing and insulin resistance produced during diabetes development. However, there is no evidence about its participation in the peripheral neuropathy induced by this metabolic disorder. Experimental diabetes was induced by streptozotocin (50mg/kg, i.p.) in female Wistar rats. Streptozotocin injection increased formalin-evoked flinching in diabetic rats as compared to non-diabetic rats after 2 weeks. Peripheral administration of NaHS (an exogenous donor of H2S) and L-cysteine (an endogenous donor of H2S) dose-dependently increased flinching behavior in diabetic and non-diabetic rats. Contrariwise, hydroxylamine (HA, a CBS inhibitor) and DL-propargylglycine (PPG, a CSE inhibitor) decreased formalin-induced nociceptive behavior in both experimental groups. In addition, an ineffective dose of HA and PPG partially prevented the L-cysteine-induced hyperalgesia in diabetic and non-diabetic rats. Interestingly, HA and PPG were three order of magnitude more potent in diabetic rats respect to non-diabetic rats, whereas NaHS was ten times more potent in the streptozotocin-diabetic group. Nine to 11 weeks after diabetes induction, tactile allodynia was observed in the streptozotocin-injected rats. On this condition, subcutaneous administration of PPG or HA reduced tactile allodynia in diabetic rats. Paradoxically, H2S levels were decreased in nerve sciatic, dorsal root ganglion and spinal cord, but not paw nor blood plasma, during diabetes-associated peripheral neuropathy development. Collectively, results suggest that H2S synthesized by CBS and CSE participate in formalin-induced nociception in diabetic and non-diabetic rats, as well as; in tactile allodynia in streptozotocin-injected rats. In addition, data seems to indicate that diabetic rats are more sensible to H2S-induced hyperalgesia than normoglycemic rats.


Assuntos
Diabetes Mellitus Experimental/complicações , Sulfeto de Hidrogênio/farmacologia , Nociceptividade/fisiologia , Algoritmos , Alcinos/farmacologia , Animais , Glicemia/metabolismo , Cistationina gama-Liase/metabolismo , Cisteína/antagonistas & inibidores , Cisteína/farmacologia , Interpretação Estatística de Dados , Feminino , Glicina/análogos & derivados , Glicina/farmacologia , Sulfeto de Hidrogênio/metabolismo , Hidroxilamina/farmacologia , Hiperalgesia/induzido quimicamente , Hiperalgesia/psicologia , Vias Neurais/efeitos dos fármacos , Dor/psicologia , Medição da Dor , Estimulação Física , Ratos , Ratos Wistar
2.
Eur J Pain ; 17(9): 1365-73, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23529950

RESUMO

BACKGROUND: l-Kynurenine has antinociceptive effects in acute and inflammatory pain. This study determined the effect of l-kynurenine and its metabolite (kynurenic acid) on rats subjected to neuropathic pain. METHODS: L5/L6 spinal nerve ligation induced tactile allodynia as measured with von Frey filaments using the up-down method. High-performance liquid chromatography and Western blot analysis determined kynurenic acid levels and expression of kynurenine amino transferase II (KAT II), respectively. RESULTS: l-Kynurenine (50-200 mg/kg, i.p.) or probenecid (100 mg/kg, i.p.) did not affect allodynia in neuropathic rats. In contrast, l-kynurenine (50-200 mg/kg, i.p.) in combination with probenecid (100 mg/kg, i.p.), an inhibitor of organic anion transport, reversed allodynia. Furthermore, intrathecal kynurenic acid (1-30 µg) reversed allodynia. Probenecid (100 mg/kg, i.p.) supplementation enhanced the maximal antiallodynic effect of intrathecal kynurenic acid (10 µg). Only the combined administration of l-kynurenine (200 mg/kg)/probenecid (100 mg/kg) increased the kynurenic acid concentration in cerebrospinal fluid. KAT II is expressed in dorsal root ganglia and dorsal spinal cord. KAT II expression was unchanged by the spinal nerve ligation or l-kynurenine/probenecid combination. The kynurenine/probenecid combination did not affect motor activity. CONCLUSIONS: l-Kynurenine produces its antiallodynic effect in the central nervous system through kynurenic acid. This effect may result from blockade of N-methyl-d-aspartate receptors. KAT II is expressed in dorsal root ganglion and dorsal spinal cord. Combined l-kynurenine and probenecid therapy has the potential to reduce neuropathic pain in humans.


Assuntos
Hiperalgesia/tratamento farmacológico , Cinurenina/uso terapêutico , Neuralgia/tratamento farmacológico , Probenecid/uso terapêutico , Animais , Quimioterapia Combinada , Feminino , Cinurenina/farmacologia , Atividade Motora/efeitos dos fármacos , Medição da Dor , Probenecid/farmacologia , Ratos , Ratos Wistar , Medula Espinal/efeitos dos fármacos
3.
Neuroscience ; 232: 169-81, 2013 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-23219842

RESUMO

The role of 5-HT2A/2B/2C receptors in formalin-induced secondary allodynia and hyperalgesia in rats was assessed. Formalin produced acute nociceptive behaviors (flinching and licking/lifting) followed by long-term secondary mechanical allodynia and hyperalgesia. Pre-treatment for five consecutive days with compound 48/80 (1, 3, 10, 10, and 10 µg/paw) prevented formalin-induced secondary allodynia and hyperalgesia. Ipsilateral, but not contralateral, peripheral pre-treatment (nmol/paw) with the 5-HT2 receptor agonist DOI (3-30), 5-HT (10-100) or fluoxetine (0.3-3) significantly increased 0.5% formalin-induced secondary allodynia and hyperalgesia in both paws. The pronociceptive effect of DOI (10 nmol/paw), 5-HT (100 nmol/paw) and fluoxetine (1 nmol/paw) was blocked by selective 5-HT2A (ketanserin), 5-HT2B (RS-127445), and 5-HT2C (RS-102221) receptor antagonists. Furthermore, ipsilateral pre-treatment (nmol/paw) with ketanserin (1, 10, and 100), RS-127445 (0.01, 0.1 and 1) or RS-102221 (1, 10 and 100) prevented while post-treatment reversed 1% formalin-induced secondary allodynia and hyperalgesia in both paws. In marked contrast, contralateral injection of the greatest tested dose of 5-HT2A/2B/2C receptor antagonists did not modify long-lasting secondary allodynia and hyperalgesia. These results suggest that 5-HT released from mast cells after formalin injection sensitizes primary afferent neurons via 5-HT2A/2B/2C receptors leading to the development and maintenance of secondary allodynia and hyperalgesia.


Assuntos
Formaldeído/toxicidade , Hiperalgesia/induzido quimicamente , Hiperalgesia/metabolismo , Receptor 5-HT2A de Serotonina/metabolismo , Receptor 5-HT2B de Serotonina/metabolismo , Receptor 5-HT2C de Serotonina/metabolismo , Anfetaminas/farmacologia , Analgésicos/farmacologia , Animais , Relação Dose-Resposta a Droga , Feminino , Fluoxetina/farmacologia , Hiperalgesia/tratamento farmacológico , Ketanserina/farmacologia , Pirimidinas/farmacologia , Ratos Wistar , Serotonina/administração & dosagem , Antagonistas da Serotonina/farmacologia , Agonistas do Receptor de Serotonina/farmacologia , Inibidores Seletivos de Recaptação de Serotonina/farmacologia , Compostos de Espiro/farmacologia , Sulfonamidas/farmacologia , p-Metoxi-N-metilfenetilamina/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...