Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Genet Epidemiol ; 42(6): 500-515, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29862559

RESUMO

Multipoint linkage analysis is an important approach for localizing disease-associated loci in pedigrees. Linkage analysis, however, is sensitive to misspecification of marker allele frequencies. Pedigrees from recently admixed populations are particularly susceptible to this problem because of the challenge of accurately accounting for population structure. Therefore, increasing emphasis on use of multiethnic samples in genetic studies requires reevaluation of best practices, given data currently available. Typical strategies have been to compute allele frequencies from the sample, or to use marker allele frequencies determined by admixture proportions averaged over the entire sample. However, admixture proportions vary among pedigrees and throughout the genome in a family-specific manner. Here, we evaluate several approaches to model admixture in linkage analysis, providing different levels of detail about ancestral origin. To perform our evaluations, for specification of marker allele frequencies, we used data on 67 Caribbean Hispanic admixed families from the Alzheimer's Disease Sequencing Project. Our results show that choice of admixture model has an effect on the linkage analysis results. Variant-specific admixture proportions, computed for individual families, provide the most detailed regional admixture estimates, and, as such, are the most appropriate allele frequencies for linkage analysis. This likely decreases the number of false-positive results, and is straightforward to implement.


Assuntos
Doença de Alzheimer/genética , Pool Gênico , Hispânico ou Latino/genética , Linhagem , Filogenia , Análise de Sequência de DNA , Região do Caribe , Etnicidade , Família , Feminino , Frequência do Gene/genética , Ligação Genética , Genética Populacional , Humanos , Escore Lod , Masculino , Modelos Genéticos , Análise de Componente Principal
2.
Dement Geriatr Cogn Disord ; 45(1-2): 1-17, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29486463

RESUMO

BACKGROUND/AIMS: The Alzheimer's Disease Sequencing Project (ADSP) aims to identify novel genes influencing Alzheimer's disease (AD). Variants within genes known to cause dementias other than AD have previously been associated with AD risk. We describe evidence of co-segregation and associations between variants in dementia genes and clinically diagnosed AD within the ADSP. METHODS: We summarize the properties of known pathogenic variants within dementia genes, describe the co-segregation of variants annotated as "pathogenic" in ClinVar and new candidates observed in ADSP families, and test for associations between rare variants in dementia genes in the ADSP case-control study. The participants were clinically evaluated for AD, and they represent European, Caribbean Hispanic, and isolate Dutch populations. RESULTS/CONCLUSIONS: Pathogenic variants in dementia genes were predominantly rare and conserved coding changes. Pathogenic variants within ARSA, CSF1R, and GRN were observed, and candidate variants in GRN and CHMP2B were nominated in ADSP families. An independent case-control study provided evidence of an association between variants in TREM2, APOE, ARSA, CSF1R, PSEN1, and MAPT and risk of AD. Variants in genes which cause dementing disorders may influence the clinical diagnosis of AD in a small proportion of cases within the ADSP.


Assuntos
Doença de Alzheimer/genética , Demência/genética , Proteínas do Tecido Nervoso/genética , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/epidemiologia , Estudos de Casos e Controles , Estudos de Coortes , Demência/epidemiologia , Feminino , Variação Genética , Estudo de Associação Genômica Ampla , Humanos , Masculino , Polimorfismo de Nucleotídeo Único , Prevalência , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...