Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Discov Mater ; 4(1): 19, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38938324

RESUMO

The development of efficient, low-cost water splitting electrocatalysts is needed to store energy by generating sustainable hydrogen from low power clean but intermittent energy sources such as solar and wind. Here, we report a highly sustained low overpotential for oxygen evolution reached by the unique combination of three metals (NiCoV) prepared from a simple low temperature auto-combustion process. The amorphous multimetal oxygen evolving catalyst could be stably coated on a stainless-steel support using a tribochemical particle blasting method to create an oxygen evolution reaction (OER) electrode with a low overpotential of 230 mV at 10 mA cm-2 and a low Tafel slope of 40 mV dec-1. In addition to their low overpotential, this oxygen evolving electrocatalyst preserved performance demonstrating a stability after 10 h at the technologically relevant current density and without any surface morphology alteration. Given the importance of sustainable hydrogen production, the development of this new OER catalyst points the way to removing a key technical bottleneck for the water splitting reaction and could offer a route to cost reduction and lowering hurdles to more widespread adaptation of electrolyser technologies for hydrogen production. Supplementary Information: The online version contains supplementary material available at 10.1007/s43939-024-00087-5.

2.
Biomater Adv ; 140: 213086, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35988368

RESUMO

Nanostructured, inorganic microspheres have many industrial applications, including catalysis, electronics, and particularly drug delivery, with several advantages over their organic counterparts. However, many current production methods require high energy input, use of harmful chemicals, and extensive processing. Here, the self-assembly of calcium pyrophosphate into nanofibre microspheres is reported. This process takes place at ambient temperature, with no energy input, and only salt water as a by-product. The formation of these materials is examined, as is the formation of nanotubes when the system is agitated, from initial precipitate to crystallisation. A mechanism of formation is proposed, whereby the nanofibre intermediates are formed as the system moves from kinetically favoured spheres to thermodynamically stable plates, with a corresponding increase in aspect ratio. The functionality of the nanofibre microspheres as targeted enteric drug delivery vehicles is then demonstrated in vitro and in vivo, showing that the microspheres can pass through the stomach while protecting the activity of a model protein, then release their payload in intestinal conditions.


Assuntos
Nanoestruturas , Nanotubos , Pirofosfato de Cálcio , Microesferas , Nanotubos/química , Proteínas
3.
Adv Biosyst ; 4(11): e2000094, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33124179

RESUMO

This study determines whether the viability of mesenchymal stem cell (MSC) in vitro is most sensitive to oxygen supply, energetic substrate supply, or accumulation of lactate. Mouse unmodified (wild type (WT)) and erythropoietin (EPO) gene-modified MSC is cultured for 7 days in normoxic (21%) and anoxic conditions. WT-MSC is cultured in anoxia for 45 days in high and regular glucose media and both have similar viability when compared to their normoxic controls at 7 days. Protein production of EPO-MSC is unaffected by the absence of oxygen. MSC doubling time and post-anoxic exposure is increased (WT: 32.3-73.3 h; EPO: 27.2-115 h). High glucose leads to a 37% increase in cell viability at 13 days and 17% at 30 days, indicating that MSC anoxic survival is affected by supply of metabolic substrate. However, after 30 days, little difference in viability is found, and at 45 days, complete cell death occurs in both the conditions. This death cannot be attributed to lack of glucose or lactate levels. MSC stemness is retained for both osteogenic and adipogenic differentiations. The absence of oxygen increases the doubling time of MSC but does not affect their viability, protein production, or differentiation capacity.


Assuntos
Glucose , Células-Tronco Mesenquimais , Oxigênio , Animais , Técnicas de Cultura de Células/métodos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Meios de Cultura/química , Glucose/metabolismo , Glucose/farmacologia , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Camundongos , Oxigênio/metabolismo , Oxigênio/farmacologia
4.
Adv Mater ; 29(35)2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28714141

RESUMO

Cement is the most consumed resource and is the most widely used material globally. The ability to extrinsically prestress cementitious materials with tendons usually made from steel allows the creation of high-strength bridges and floors from this otherwise brittle material. Here, a dual setting cement system based on the combination of hydraulic cement powder with an aqueous silk fibroin solution that intrinsically generates a 3D prestressing during setting, dramatically toughening the cement to the point it can be cut with scissors, is reported. Changes of both ionic concentration and pH during cement setting are shown to create an interpenetrating silk fibroin inorganic composite with the combined properties of the elastic polymer and the rigid cement. These hybrid cements are self-densifying and show typical ductile fracture behavior when dry and a high elasticity under wet conditions with mechanical properties (bending and compressive strength) nearly an order of magnitude higher than the fibroin-free cement reference.

5.
Front Cell Dev Biol ; 5: 54, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28573133

RESUMO

Osteoclasts are giant bone cells formed by fusion from monocytes and uniquely capable of a complete destruction of mineralized tissues. Previously, we have demonstrated that in energy-rich environment not only osteoclast fusion index (the number of nuclei each osteoclast contains), but also cytoplasm volume per single nucleus was increased. The goal of this study was to investigate the regulation of metabolic sensor mTOR during osteoclast differentiation in energy-rich environment simulated by addition of pyruvate. We have found that in the presence of pyruvate, the proportion of mTOR associated with raptor increased, while mTOR-rictor-mediated Akt phosphorylation decreased. Inhibition of mTOR with rapamycin (10 nM) significantly interfered with all aspects of osteoclastogenesis. However, rapamycin at 1 nM, which preferentially targets mTOR-raptor complex, was only effective in control cultures, while in the presence of pyruvate osteoclast fusion index was successfully increased. Inhibition of Akt drastically reduced osteoclast fusion, however in energy-rich environment, osteoclasts of comparable size were formed through increased cytoplasm growth. These data suggest that mTOR-rictor mediated Akt signaling regulates osteoclast fusion, while mTOR-raptor regulation of protein translation contributes to fusion-independent cytoplasm growth. We demonstrate that depending on the bioenergetics microenvironment osteoclastogenesis can adjust to occur through preferential multinucleation or through cell growth, implying that attaining large cell size is part of the osteoclast differentiation program.

6.
Tissue Eng Part A ; 23(23-24): 1372-1381, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28562185

RESUMO

Tissue hypoxia is a critical driving force for angiogenic and osteogenic responses in bone regeneration and is, at least partly, under the control of the Hypoxia Inducible Factor-1α (HIF-1α) pathway. Recently, the widely used iron chelator deferoxamine (DFO) has been found to elevate HIF-1α levels independent of oxygen concentrations, thereby, creating an otherwise normal environment that mimics the hypoxic state. This has the potential to augment the biological properties of inorganic scaffolds without the need of recombinant growth factors. This pilot study investigates the effect of local delivery of DFO on bone formation and osseointegration of an anatomically matched bone graft substitute, in the treatment of segmental bone defects. Three-dimensional printing was used to create monetite grafts, which were implanted into 10 mm midshaft ulnar defects in eight rabbits. Starting postoperative day 4, one graft site in each animal was injected with 600 µL (200 µM) of DFO every 48 h for six doses. Saline was injected in the contralateral limb as a control. At 8 weeks, micro-CT and histology were used to determine new bone growth, vascularity, and assess osseointegration. Six animals completed the protocol. Bone metric analysis using micro-CT showed a significantly greater amount of new bone formed (19.5% vs. 13.65% p = 0.042) and an increase in bone-implant contact area (63.1 mm2 vs. 33.2 mm2 p = 0.03) in the DFO group compared with control. Vascular channel volume was significantly greater in the DFO group (20.9% vs. 16.2% p = 0.004). Histology showed increased bone formation within the osteotomy gap, more bone integrated with the graft surface as well as more matured soft tissue callus in the DFO group. This study demonstrates a significant increase in new bone formation after delivery of DFO in a rabbit long bone defect bridged by a 3D-printed bioresorbable bone graft substitute. Given the safety, ease of handling, and low expense of this medication, the results of this study support further investigation into the use of iron chelators in creating a biomimetic environment for bone healing in segmental bone loss.


Assuntos
Regeneração Óssea/efeitos dos fármacos , Substitutos Ósseos , Fosfatos de Cálcio , Desferroxamina , Subunidade alfa do Fator 1 Induzível por Hipóxia/biossíntese , Hipóxia , Impressão Tridimensional , Animais , Substitutos Ósseos/química , Substitutos Ósseos/farmacologia , Fosfatos de Cálcio/química , Fosfatos de Cálcio/farmacologia , Desferroxamina/química , Desferroxamina/farmacologia , Coelhos , Ulna
7.
Biomater Res ; 21: 10, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28616254

RESUMO

BACKGROUND: In vitro cell testing of degradable bioceramics such as brushite or monetite is often challenging due to the ion release into or adsorption from the culture medium. These ionic changes are then mostly responsible for cell proliferation and activity, which prohibits the investigation of effects originating from surface topography or further material modifications. METHODS: Here, we aimed to solve this problem by developing a pre-conditioning regime following the repeated immersion of brushite and monetite samples in various Ca2+, Mg2+ and PO43- containing electrolytes, followed by studying ion adsorption / release as well as changes in phase composition and in vitro cytocompatibility with MG63 cells. RESULTS: The results demonstrated that by using DMEM cell culture medium in a ratio of 10 ml/sample was sufficient to minimize changes of ionic composition after 7 d with a daily change of the medium. This leads to changes of the surface composition with dissolution of the brushite phase. In turn, this also positively influences the in vitro cytocompatibility with a 2-3 fold higher cell number and cell activity on the DMEM pretreated surfaces. CONCLUSIONS: Controlled sample washing prior to cell testing using DMEM medium seems to be a valuable procedure not only to stabilize the pH during cell culture but also to maintain ion concentrations within a cell friendly range.

8.
Mater Sci Eng C Mater Biol Appl ; 76: 991-996, 2017 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-28482617

RESUMO

TiO2, glucose oxidase and carbon nanotube microparticles were ultrasonically formed to provide a large surface area for enzyme immobilisation and a favorable microenvironment for direct electron transfer. This simple architecture nanostructure was used to construct a glucose oxidase biosensor, which demonstrated good analytical performance with high reproducibility, and good detection for pathological glucose level.


Assuntos
Titânio/química , Técnicas Biossensoriais , Eletrodos , Enzimas Imobilizadas , Glucose , Glucose Oxidase , Nanotubos de Carbono , Reprodutibilidade dos Testes
9.
Sci Rep ; 7(1): 558, 2017 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-28373697

RESUMO

Dicalcium phosphate cement preparation requires the addition of setting retarders to meet clinical requirements regarding handling time and processability. Previous studies have focused on the influence of different setting modifiers on material properties such as mechanical performance or injectability, while ignoring their influence on biological cement properties as they are used in low concentrations in the cement pastes and the occurrence of most compounds in human tissues. Here, analyses of both material and biological behavior were carried out on samples with common setting retardants (citric acid, sodium pyrophosphate, sulfuric acid) and novel (phytic acid). Cytocompatibility was evaluated by in vitro tests with osteoblastic (hFOB 1.19) and osteoclastic (RAW 264.7) cells. We found cytocompatibility was better for sodium pyrophosphate and phytic acid with a three-fold cell metabolic activity by WST-1 test, whereas samples set with citric acid showed reduced cell number as well as cell activity. The compressive strength (CS) of cements formed with phytic acid (CS = 13 MPa) were nearly equal to those formed with citric acid (CS = 15 MPa) and approximately threefold higher than for other setting retardants. Due to a proven cytocompatibility and high mechanical strength, phytic acid seems to be a candidate replacement setting retardant for dicalcium phosphate cements.


Assuntos
Fosfatos de Cálcio , Ácido Fítico , Animais , Materiais Biocompatíveis/química , Cimentos Ósseos/química , Fosfatos de Cálcio/química , Técnicas de Cultura de Células , Linhagem Celular , Sobrevivência Celular , Células Cultivadas , Cimentos Dentários/química , Teste de Materiais , Fenômenos Mecânicos , Camundongos , Osteoblastos , Osteoclastos , Ácido Fítico/química , Células RAW 264.7 , Temperatura , Difração de Raios X
10.
J Bone Oncol ; 6: 8-15, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28138422

RESUMO

Bisphosphonates (BPs) have recently been shown to have direct anti-tumor properties. Systemic treatment with BPs can have multiple adverse effects such as osteonecrosis of the jaw and BP induced bone fracturing and spine instability. While benefits of systemic BP treatments may outweigh risks, local treatment with BPs has been explored as an alternate strategy to reduce unwarranted risk. In the present study, we examined whether local delivery of BPs inhibits tumor-induced osteolysis and tumor growth more effectively than systemic treatment in an animal model of tumor-induced bone disease. Following establishment of an intra-tibial model of bone metastases in athymic mice, the experimental group was treated by local administration of zoledronate into the tibial lesion. A comparison of the effect of local versus systemic delivery of zoledronate on the formation of tumor-induced osteolysis was also carried out. A significant increase in mean bone volume/tissue volume % (BV/TV) of the locally treated group (12.30±2.80%) compared to the control group (7.13±1.22%) (P<0.001). Additionally, there was a significant increase in the BV/TV (10.90±1.25%) in the locally treated group compared to the systemically treated group (7.53±0.75%) (P=0.005). These preliminary results suggest that local delivery of BPs outperforms both systemic and control treatments to inhibit tumor-induced osteolysis.

11.
Adv Drug Deliv Rev ; 122: 84-104, 2017 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-28214553

RESUMO

In addition to immunological and wound healing cell and platelet delivery, ion stasis and nutrient supply, blood delivers oxygen to cells and tissues and removes metabolic wastes. For decades researchers have been trying to develop approaches that mimic these two immediately vital functions of blood. Oxygen is crucial for the long-term survival of tissues and cells in vertebrates. Hypoxia (oxygen deficiency) and even at times anoxia (absence of oxygen) can occur during organ preservation, organ and cell transplantation, wound healing, in tumors and engineering of tissues. Different approaches have been developed to deliver oxygen to tissues and cells, including hyperbaric oxygen therapy (HBOT), normobaric hyperoxia therapy (NBOT), using biochemical reactions and electrolysis, employing liquids with high oxygen solubility, administering hemoglobin, myoglobin and red blood cells (RBCs), introducing oxygen-generating agents, using oxygen-carrying microparticles, persufflation, and peritoneal oxygenation. Metabolic waste accumulation is another issue in biological systems when blood flow is insufficient. Metabolic wastes change the microenvironment of cells and tissues, influence the metabolic activities of cells, and ultimately cause cell death. This review examines advances in blood mimicking systems in the field of biomedical engineering in terms of oxygen delivery and metabolic waste removal.


Assuntos
Engenharia Biomédica , Biomimética , Sangue/metabolismo , Oxigênio/sangue , Oxigênio/metabolismo , Animais , Humanos , Oxigenoterapia Hiperbárica , Hipóxia/sangue , Hipóxia/metabolismo , Cicatrização
12.
Acta Biomater ; 42: 411-419, 2016 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-27449336

RESUMO

UNLABELLED: Iron chelators are known activators of the Hypoxia Includible Factor-1α (HIF-1α) pathway, a critical cellular pathway involved in angiogenic responses to hypoxia. Local delivery of these chelators has shown promise in bone tissue engineering strategies by inducing angiogenesis and osteogenesis. Hypoxic microenvironments are also a stimulus for osteoclast differentiation and resorptive activity, a process likely mediated by HIF-1α. In vitro, low doses of the iron chelator Deferoxamine (DFO) has shown to induce HIF-1α mediated osteoclast formation and function. However other studies have proposed an opposite in vitro effect likely through HIF independent mechanisms. To investigate use of these medications in bioceramic based bone tissue engineering strategies this study aimed to determine the in vivo effect of local delivery of iron chelators on bioceramic remodeling. A non-weight bearing cranial onlay model was used to assess monetite resorption and new bone formation in the presence or absence of a repeated delivery of two iron chelators, DFO and 1,10 Phenanthroline (PHT) at doses known to induce HIF. We found a marked reduction graft resorption and remodeling associated with iron chelation. This was correlated to a 3-fold reduction in osteoclast number at the bone graft interface. Iron is needed for mitochondrial biogenesis during osteoclastic differentiation and reducing extracellular iron levels may inhibit this process and possibly overpower any HIF induced osteoclast formation. Our findings suggest that these inexpensive and widely available molecules may be used to locally reduce bioceramic scaffold resorption and encourages future investigations of iron chelators as bone anti-resorptive agents in other clinical contexts. STATEMENT OF SIGNIFICANCE: Low doses of iron chelators can induce angiogenesis and osteogenesis in repairing bone by stimulating the oxygen sensitive gene; hypoxia inducible factor. These medications have potential to augment bioceramic based bone tissue engineering strategies without the downsides of protein-based growth factors. HIF activation is also known to stimulate osteoclast-mediated resorption and could potentially accelerate remodeling of biocermaics, however we have shown that the local delivery of iron chelation at doses known to induce HIF resulted in a reduction of monetite resorption and a significant decrease in osteoclast number at the bone graft interface. This maybe due to HIF independent mechanism. This is the first study to show a local effect of iron chelators in vivo on osteoclast-mediated resorption. This opens the potential of further study of these bifunctional medications to modulate resorption of biocermaics in environments where a prolonged presence of material is desired for graft site stability. Moreover these safe widely used medications can be explored to locally reduce osteoclasts in pathological bone resorption.


Assuntos
Substitutos Ósseos/farmacologia , Transplante Ósseo , Fosfatos de Cálcio/farmacologia , Sistemas de Liberação de Medicamentos , Quelantes de Ferro/administração & dosagem , Quelantes de Ferro/farmacologia , Animais , Osso e Ossos/diagnóstico por imagem , Osso e Ossos/patologia , Osso e Ossos/cirurgia , Imageamento Tridimensional , Implantes Experimentais , Cuidados Intraoperatórios , Coelhos , Fosfatase Ácida Resistente a Tartarato/metabolismo , Tomografia Computadorizada por Raios X , Difração de Raios X
13.
Nano Lett ; 16(8): 4779-87, 2016 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-27280476

RESUMO

Hydrogels composed of two-dimensional (2D) nanomaterials have become an important alternative to replace traditional inorganic scaffolds for tissue engineering. Here, we describe a novel nanocrystalline material with 2D morphology that was synthesized by tuning the crystallization of the sodium-magnesium-phosphate system. We discovered that the sodium ion can regulate the precipitation of magnesium phosphate by interacting with the crystal's surface causing a preferential crystal growth that results in 2D morphology. The 2D nanomaterial gave rise to a physical hydrogel that presented extreme thixotropy, injectability, biocompatibility, bioresorption, and long-term stability. The nanocrystalline material was characterized in vitro and in vivo and we discovered that it presented unique biological properties. Magnesium phosphate nanosheets accelerated bone healing and osseointegration by enhancing collagen formation, osteoblasts differentiation, and osteoclasts proliferation through up-regulation of COL1A1, RunX2, ALP, OCN, and OPN. In summary, the 2D magnesium phosphate nanosheets could bring a paradigm shift in the field of minimally invasive orthopedic and craniofacial interventions because it is the only material available that can be injected through high gauge needles into bone defects in order to accelerate bone healing and osseointegration.

14.
Langmuir ; 31(35): 9718-27, 2015 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-26038977

RESUMO

We have developed a potentiostatic double-pulse technique for silver nanoparticle (Ag NP) deposition on graphene (GRn) with superior electronic and ionic conductivity. This approach yielded a two-dimensional electrocatalyst with a homogeneous Ag NP spatial distribution having remarkable performance in the oxygen reduction reaction (ORR). GRn sheets were reproducibly prepared by the electrochemical exfoliation of graphite (GRp) at high yield and purity with a low degree of oxidation. Polystyrenesulfonate added during exfoliation enhanced the stability of the GRn solution by preventing the restacking of the graphene sheets and increased its ionic conductivity. The potentiostatic double-pulse technique is generally used to electrodeposit Pt nanoparticles and remains challenging for silver metal that exhibits nucleation and growth potentials relatively close to each other. We judiciously exploited this narrow margin of potential, and for the first time we report Ag NP electrodeposited onto graphene with the subsequent ability to control both the density and the size of metallic nanoparticles. Considering the high activity along with the lower cost of Ag compared to Pt, these findings are highly relevant to the successful commercialization of fuel cells and other electrochemical energy devices.


Assuntos
Técnicas Eletroquímicas , Grafite/química , Nanopartículas Metálicas/química , Oxigênio/química , Prata/química , Catálise , Oxirredução , Tamanho da Partícula , Propriedades de Superfície
15.
Biomaterials ; 54: 126-35, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25907046

RESUMO

Copper is becoming recognised as a key cation in a variety of biological processes. Copper chelation has been studied as a potential anti-angiogenic strategy for arresting tumour growth. Conversely the delivery of copper ions and complexes in vivo can elicit a pro-angiogenic effect. Previously we unexpectedly found that copper-stimulated intraperitoneal angiogenesis was accompanied by collagen deposition. Here, in hard tissue, not only was healing accelerated by copper, but again enhanced deposition of collagen was detected at 2 weeks. Experiments with reconstituted collagen showed that addition of copper ions post-fibrillogenesis rendered plastically-compressed gels resistant to collagenases, enhanced their mechanical properties and increased the denaturation temperature of the protein. Unexpectedly, this apparently interfibrillar crosslinking was not affected by addition of glucose or ascorbic acid, which are required for crosslinking by advanced glycation end products (AGEs). Fibroblasts cultured on copper-crosslinked gels did not proliferate, whereas those cultured with an equivalent quantity of copper on either tissue culture plastic or collagen showed no effect compared with controls. Although non-proliferative, fibroblasts grown on copper-cross-linked collagen could migrate, remained metabolically active for at least 14 days and displayed a 6-fold increase in Mmps 1 and 3 mRNA expression compared with copper-free controls. The ability of copper ions to crosslink collagen fibrils during densification and independently of AGEs or Fenton type reactions is previously unreported. The effect on MMP susceptibility of collagen and the dramatic change in cell behaviour on this crosslinked ECM may contribute to shedding some light on unexplained phenomena as the apparent benefit of copper complexation in fibrotic disorders or the enhanced collagen deposition in response to localised copper delivery.


Assuntos
Cobre/metabolismo , Matriz Extracelular/metabolismo , Colágenos Fibrilares/metabolismo , Fibroblastos/citologia , Fibroblastos/fisiologia , Metaloproteinases da Matriz/metabolismo , Diferenciação Celular/fisiologia , Proliferação de Células/fisiologia , Células Cultivadas , Cobre/química , Reagentes de Ligações Cruzadas/química , Reagentes de Ligações Cruzadas/metabolismo , Matriz Extracelular/química , Colágenos Fibrilares/química , Humanos
16.
Acta Biomater ; 20: 140-146, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25829107

RESUMO

Bone resorbing osteoclasts represent an important therapeutic target for diseases associated with bone and joint destruction, such as rheumatoid arthritis, periodontitis, and osteoporosis. The quantification of osteoclast resorptive activity in vitro is widely used for screening new anti-resorptive medications. The aim of this paper was to develop a simplified semi-automated method for the quantification of osteoclastic resorption using fluorescently labeled biomimetic mineral layers which can replace time intensive, often subjective and clearly non-sustainable use of translucent slices of tusks from vulnerable or endangered species such as the elephant. Osteoclasts were formed from RAW 264.7 mouse monocyte cell line using the pro-resorptive cytokine receptor activator of nuclear factor kappa-B ligand (RANKL). We confirmed that fluorescent labeling did not interfere with the biomimetic features of hydroxyapatite, and developed an automated method for quantifying osteoclastic resorption. Correlation between our assay and traditional manual measurement techniques was found to be very strong (R(2)=0.99). In addition, we modified the technique to provide depth and volume data of the resorption pits by confocal imaging at defined depths. Thus, our method allows automatic quantification of total osteoclastic resorption as well as additional data not obtainable by the current tusk slice technique offering a better alternative for high throughput screening of potential antiresorptives.


Assuntos
Materiais Biomiméticos/farmacologia , Fosfatos de Cálcio/farmacologia , Dextranos/farmacologia , Osteoclastos/efeitos dos fármacos , Animais , Reabsorção Óssea/patologia , Durapatita/química , Fluorescência , Camundongos , Osteogênese/efeitos dos fármacos , Células RAW 264.7
17.
Acta Biomater ; 17: 1-15, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25676583

RESUMO

The biological performance of bone graft substitutes based on calcium phosphate bioceramics is dependent on a number of properties including chemical composition, porosity and surface micro- and nanoscale structure. However, in contemporary bioceramics these properties are interlinked, therefore making it difficult to investigate the individual effects of each property on cell behavior. In this study we have attempted to investigate the effects of calcium and inorganic phosphate ions independent from one another by preparing composite materials with polylactic acid (PLA) as a polymeric matrix and calcium carbonate or sodium phosphate salts as fillers. Clinically relevant bone marrow derived human mesenchymal stromal cells (hMSCs) were cultured on these composites and proliferation, osteogenic differentiation and ECM mineralization were investigated with time and were compared to plain PLA control particles. In parallel, cells were also cultured on conventional cell culture plates in media supplemented with calcium or inorganic phosphate to study the effect of these ions independent of the 3D environment created by the particles. Calcium was shown to increase proliferation of cells, whereas both calcium and phosphate positively affected alkaline phosphatase enzyme production. QPCR analysis revealed positive effects of calcium and of inorganic phosphate on the expression of osteogenic markers, in particular bone morphogenetic protein-2 and osteopontin. Higher levels of mineralization were also observed upon exposure to either ion. Effects were similar for cells cultured on composite materials and those cultured in supplemented media, although ion concentrations in the composite cultures were lower. The approach presented here may be a valuable tool for studying the individual effects of a variety of soluble compounds, including bioinorganics, without interference from other material properties.


Assuntos
Materiais Biocompatíveis/química , Fosfatos de Cálcio/química , Cálcio/química , Células-Tronco Mesenquimais/citologia , Fosfatos/química , Fosfatase Alcalina/metabolismo , Proteína Morfogenética Óssea 2/metabolismo , Técnicas de Cultura de Células , Diferenciação Celular , Proliferação de Células , Cerâmica , Humanos , Íons , Ácido Láctico/química , Teste de Materiais , Microscopia Eletrônica de Varredura , Osteogênese , Osteopontina/metabolismo , Tamanho da Partícula , Poliésteres , Polímeros/química
18.
Biomaterials ; 37: 252-9, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25453955

RESUMO

We demonstrate that intrafibrillar, homogenous collagen biomineralization can be achieved by controlling self-assembly under mildly alkaline conditions. Using dense collagen (DC) gels as an osteoid model, we modulated their fibrillogenesis environment to evaluate the effects of fibrillogenesis pH on the protein charge distribution and ultimately on biomineralization. Cationic and anionic dye staining and electron cryomicroscopy analyses established that fibrillogenesis under mildly alkaline conditions promotes the formation of electronegative charges within the protein (anionic DC gels). These charges are stable upon titration of the gel pH to physiological values. Subsequent exposure of anionic DC gels to simulated body fluid induced the intrafibrillar biomineralization of the gels, promoting a rapid, extensive formation of carbonated hydroxyapatite, and strongly impacting gel mechanical properties. The generality and significance of this approach has been addressed by implanting freshly made anionic DC gels in vivo, in a rat subcutaneous model. Subcutaneous implants showed an extensive, homogenous biomineralization as early as at day 7, indicating that anionic collagen gels rapidly self-mineralize upon contact with body fluids in a non-osseous implantation site. The control of collagen fibrillogenesis pH provides not only new interpretations to what has been called the collagen mineralization enigma by demonstrating that neat collagen can intrafibrilarly self-mineralize, but it will also set a new starting point for the use of DC gels in bone regenerative medicine, in addition as potential applications as mineralized tissue model or as slow-release delivery carriers.


Assuntos
Colágenos Fibrilares/metabolismo , Minerais/metabolismo , Animais , Colágenos Fibrilares/química , Colágenos Fibrilares/ultraestrutura , Concentração de Íons de Hidrogênio , Fenômenos Mecânicos , Minerais/química , Nanopartículas/química , Ratos , Espectroscopia de Infravermelho com Transformada de Fourier
19.
Acta Biomater ; 11: 467-76, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25263032

RESUMO

The current study describes a dual-mechanism-setting cement that combines a brushite-forming cement paste with a second inorganic silica-based precursor. Materials were obtained by pre-hydrolyzing tetraethyl orthosilicate (TEOS) under acidic conditions following the addition of a calcium phosphate cement (CPC) powder mixed of ß-tricalcium phosphate and monocalcium phosphate. Cement setting occurred by a dissolution-precipitation process, while changes in pH during setting simultaneously initiated the condensation reaction of the hydrolyzed TEOS. This resulted in an interpenetrating phase composite material in which the macropores of the CPC were infiltrated by the microporous silica gel, leading to a higher density and a compressive strength ∼5-10 times higher than the CPC reference. This also altered the release of vancomycin as a model drug, whereby in contrast to the quantitative release from the CPC reference, 25% of the immobilized drug remained in the composite matrix. By varying the TEOS content in the composite, the cement phase composition could be controlled to form either brushite, anhydrous monetite or a biphasic mixture of both. The composites with the highest silicate content showed a cell proliferation similar to a hydroxyapatite reference with a significantly higher activity per cell. Surprisingly, the biological response did not seem to be attributed to the released silicate ions, but to the release of phosphate and the adsorption of magnesium ions from the cell culture medium.


Assuntos
Cimentos Ósseos/síntese química , Fosfatos de Cálcio/química , Fosfatos de Cálcio/farmacologia , Osteoblastos/citologia , Osteoblastos/fisiologia , Sílica Gel/química , Sílica Gel/farmacologia , Apoptose/efeitos dos fármacos , Apoptose/fisiologia , Cimentos Ósseos/farmacologia , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Módulo de Elasticidade , Dureza , Humanos , Concentração de Íons de Hidrogênio , Teste de Materiais , Osteoblastos/efeitos dos fármacos , Transição de Fase
20.
Langmuir ; 30(23): 6915-9, 2014 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-24856780

RESUMO

Biomimetic carbonation carried out with carbonic anhydrase (CA) in CO2-absorbing solutions, such as methyldiethanolamine (MDEA), is one approach that has been developed to accelerate the capture of CO2. However, there are several practical issues, such as high cost and limited enzyme stability, that need to be overcome. In this study, the capacity of CA immobilization on a porous solid support was studied to improve the instability in the tertiary amine solvent. We have shown that a 63% porosity macroporous carbon foam support makes separation and reuse facile and allows for an efficient supply and presentation of CO2 to an aqueous solvent and the enzyme catalytic center. These enzymatic supports conserved 40% of their initial activity after 42 days at 70 °C in an amine solvent, whereas the free enzyme shows no activity after 1 h in the same conditions. In this work, we have overcome the technical barrier associated with the recovery of the biocatalyst after operation, and most of all, these electropolymerized enzymatic supports have shown a remarkable increase of thermal stability in an amine-based CO2 sequestration solvent.


Assuntos
Dióxido de Carbono/química , Anidrases Carbônicas/química , Anidrases Carbônicas/metabolismo , Enzimas Imobilizadas/química , Etanolaminas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...