Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanoscale ; 8(22): 11571-9, 2016 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-27210516

RESUMO

The electrophoretic transport of single-stranded DNA through biological nanopores such as alpha-hemolysin (αHL) is a promising and cost-effective technology with the potential to revolutionize genomics. The rational design of pores with the controlled polymer translocation rates and high contrast between different nucleotides could improve significantly nanopore sequencing applications. Here, we apply a combination of theoretical and experimental methods in an attempt to elucidate several selective modifications in the pore which were proposed to be central for the effective discrimination between purines and pyrimidines. Our nanopore test set includes the wild type αHL and six mutants (E111N/M113X/K147N) in which the cross-section and chemical functionality of the first constriction zone of the pore are modified. Electrophysiological recordings were combined with all-atom Molecular Dynamics simulations (MD) and a recently developed Brownian Dynamics (BROMOC) protocol to investigate residual ion currents and pore-DNA interactions for two homo-polymers e.g. poly(dA)40 or poly(dC)40 blocking the pore. The calculated residual currents and contrast in the poly(dA)40/poly(dC)40 blocked pore are in qualitative agreement with the experimental recordings. We showed that a simple structural metric allows rationalization of key elements in the emergent contrast between purines and pyrimidines in the modified αHL mutants. The shape of the pore and its capacity for hydrogen bonding to a translocated polynucleotide are two essential parameters for contrast optimization. To further probe the impact of these two factors in the ssDNA sensing, we eliminated the effect of the primary constriction using serine substitutions (i.e. E111S/M113S/T145S/K147S) and increased the hydrophobic volume of the central residue in the secondary constriction (L135I). This pore modification sharply increased the contrast between Adenine (A) and Cytosine (C).

2.
Bionanoscience ; 4(1): 78-84, 2014 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-24678449

RESUMO

Although significant progress has recently been made towards realizing the goal of direct nanopore based DNA sequencing [1], there are still numerous hurdles that need to be overcome. One such hurdle associated with the use of the biological nanopore α-hemolysin (αHL) is the fact that the wild type channel contains three very distinct recognition or sensing regions within the ß-barrel [2, 3], making identification of the bases residing within or moving through the pore very difficult. Through site directed mutagenesis, we have been able to selectively remove one of two sensing regions while simultaneously enhancing the third. Our approach has led to the creation of αHL pores containing single sensing zones and provides the basis for engineering αHL pores suitable for direct DNA sequencing.

3.
J Am Chem Soc ; 132(6): 1878-85, 2010 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-20099878

RESUMO

We present the use of an alternating current (AC) signal as a means to monitor the conductance of an alpha-hemolysin (alphaHL) pore as a DNA hairpin with a polydeoxyadenosine tail is driven into and released from the pore. Specifically, a 12 base pair DNA hairpin attached to a 50-nucleotide poly-A tail (HP-A(50)) is threaded into an alphaHL channel using a DC driving voltage. Once the HP-A(50) molecule is trapped within the alphaHL channel, the DC driving voltage is turned off and the conductance of the channel is monitored using an AC voltage. The escape time, defined as the time it takes the HP-A(50) molecule to transport out of the alphaHL channel, is then measured. This escape time has been monitored as a function of AC amplitude (20 to 250 mV(ac)), AC frequency (60-200 kHz), DC drive voltage (0 to 100 mV(dc)), and temperature (-10 to 20 degrees C), in order to determine their effect on the predominantly diffusive motion of the DNA through the nanopore. The applied AC voltage used to monitor the conductance of the nanopore has been found to play a significant role in the DNA/nanopore interaction. The experimental results are described by a one-dimensional asymmetric periodic potential model that includes the influence of the AC voltage. An activation enthalpy barrier of 1.74 x 10(-19) J and a periodic potential asymmetry parameter of 0.575 are obtained for the diffusion at zero electrical bias of a single nucleotide through alphaHL.


Assuntos
DNA/química , Condutividade Elétrica , Nanoestruturas/química , Sequência de Bases , DNA/genética , Difusão , Proteínas Hemolisinas/química , Sequências Repetidas Invertidas , Porosidade , Temperatura , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...