Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Concurr Comput ; 32(2)2020 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-32669980

RESUMO

Parameter sensitivity analysis (SA) is an effective tool to gain knowledge about complex analysis applications and assess the variability in their analysis results. However, it is an expensive process as it requires the execution of the target application multiple times with a large number of different input parameter values. In this work, we propose optimizations to reduce the overall computation cost of SA in the context of analysis applications that segment high-resolution slide tissue images, ie, images with resolutions of 100k × 100k pixels. Two cost-cutting techniques are combined to efficiently execute SA: use of distributed hybrid systems for parallel execution and computation reuse at multiple levels of an analysis pipeline to reduce the amount of computation. These techniques were evaluated using a cancer image analysis workflow on a hybrid cluster with 256 nodes, each with an Intel Phi and a dual socket CPU. Our parallel execution method attained an efficiency of over 90% on 256 nodes. The hybrid execution on the CPU and Intel Phi improved the performance by 2×. Multilevel computation reuse led to performance gains of over 2.9×.

2.
Comput Biol Med ; 108: 371-381, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-31054503

RESUMO

Digital pathology imaging enables valuable quantitative characterizations of tissue state at the sub-cellular level. While there is a growing set of methods for analysis of whole slide tissue images, many of them are sensitive to changes in input parameters. Evaluating how analysis results are affected by variations in input parameters is important for the development of robust methods. Executing algorithm sensitivity analyses by systematically varying input parameters is an expensive task because a single evaluation run with a moderate number of tissue images may take hours or days. Our work investigates the use of Surrogate Models (SMs) along with parallel execution to speed up parameter sensitivity analysis (SA). This approach significantly reduces the SA cost, because the SM execution is inexpensive. The evaluation of several SM strategies with two image segmentation workflows demonstrates that a SA study with SMs attains results close to a SA with real application runs (mean absolute error lower than 0.022), while the SM accelerates the SA execution by 51 × . We also show that, although the number of parameters in the example workflows is high, most of the uncertainty can be associated with a few parameters. In order to identify the impact of variations in segmentation results to downstream analyses, we carried out a survival analysis with 387 Lung Squamous Cell Carcinoma cases. This analysis was repeated using 3 values for the most significant parameters identified by the SA for the two segmentation algorithms; about 600 million cell nuclei were segmented per run. The results show that significance of the survival correlations of patient groups, assessed by a logrank test, are strongly affected by the segmentation parameter changes. This indicates that sensitivity analysis is an important tool for evaluating the stability of conclusions from image analyses.


Assuntos
Algoritmos , Carcinoma de Células Escamosas , Núcleo Celular/patologia , Processamento de Imagem Assistida por Computador , Neoplasias Pulmonares , Reconhecimento Automatizado de Padrão , Fluxo de Trabalho , Carcinoma de Células Escamosas/diagnóstico por imagem , Carcinoma de Células Escamosas/mortalidade , Carcinoma de Células Escamosas/patologia , Bases de Dados Factuais , Feminino , Humanos , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/mortalidade , Neoplasias Pulmonares/patologia , Masculino
3.
Proc IEEE Int Conf Clust Comput ; 2017: 25-35, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29081725

RESUMO

We investigate efficient sensitivity analysis (SA) of algorithms that segment and classify image features in a large dataset of high-resolution images. Algorithm SA is the process of evaluating variations of methods and parameter values to quantify differences in the output. A SA can be very compute demanding because it requires re-processing the input dataset several times with different parameters to assess variations in output. In this work, we introduce strategies to efficiently speed up SA via runtime optimizations targeting distributed hybrid systems and reuse of computations from runs with different parameters. We evaluate our approach using a cancer image analysis workflow on a hybrid cluster with 256 nodes, each with an Intel Phi and a dual socket CPU. The SA attained a parallel efficiency of over 90% on 256 nodes. The cooperative execution using the CPUs and the Phi available in each node with smart task assignment strategies resulted in an additional speedup of about 2×. Finally, multi-level computation reuse lead to an additional speedup of up to 2.46× on the parallel version. The level of performance attained with the proposed optimizations will allow the use of SA in large-scale studies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...