Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microorganisms ; 11(11)2023 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-38004701

RESUMO

Phages influence microbial communities, can be applied in phage therapy, or may serve as bioindicators, e.g., in (waste)water management. We here characterized the Escherichia phage vB_EcoS-EE09 isolated from an urban wastewater treatment plant effluent. Phage vB_EcoS-EE09 belongs to the genus Dhillonvirus, class Caudoviricetes. It has an icosahedral capsid with a long non-contractile tail and a dsDNA genome with an approximate size of 44 kb and a 54.6% GC content. Phage vB_EcoS-EE09 infected 12 out of the 17 E. coli strains tested. We identified 16 structural phage proteins, including the major capsid protein, in cell-free lysates by protein mass spectrometry. Comparative proteomics of protein extracts of infected E. coli cells revealed that proteins involved in amino acid and protein metabolism were more abundant in infected compared to non-infected cells. Among the proteins involved in the stress response, 74% were less abundant in the infected cultures compared to the non-infected controls, with six proteins showing significant less abundance. Repressing the expression of these proteins may be a phage strategy to evade host defense mechanisms. Our results contribute to diversifying phage collections, identifying structural proteins to enable better reliability in annotating taxonomically related phage genomes, and understanding phage-host interactions at the protein level.

2.
Microorganisms ; 10(2)2022 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-35208823

RESUMO

The microbial biogas network is complex and intertwined, and therefore relatively stable in its overall functionality. However, if key functional groups of microorganisms are affected by biotic or abiotic factors, the entire efficacy may be impaired. Bacteriophages are hypothesized to alter the steering process of the microbial network. In this study, an enriched fraction of virus-like particles was extracted from a mesophilic biogas reactor and sequenced on the Illumina MiSeq and Nanopore GridION sequencing platforms. Metagenome data analysis resulted in identifying 375 metagenome-assembled viral genomes (MAVGs). Two-thirds of the classified sequences were only assigned to the superkingdom Viruses and the remaining third to the family Siphoviridae, followed by Myoviridae, Podoviridae, Tectiviridae, and Inoviridae. The metavirome showed a close relationship to the phage genomes that infect members of the classes Clostridia and Bacilli. Using publicly available biogas metagenomic data, a fragment recruitment approach showed the widespread distribution of the MAVGs studied in other biogas microbiomes. In particular, phage sequences from mesophilic microbiomes were highly similar to the phage sequences of this study. Accordingly, the virus particle enrichment approach and metavirome sequencing provided additional genome sequence information for novel virome members, thus expanding the current knowledge of viral genetic diversity in biogas reactors.

3.
BMC Genomics ; 22(1): 464, 2021 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-34157973

RESUMO

BACKGROUND: Cylindrospermopsin is a highly persistent cyanobacterial secondary metabolite toxic to humans and other living organisms. Strain OF001 and A210 are manganese-oxidizing bacteria (MOB) able to transform cylindrospermopsin during the oxidation of Mn2+. So far, the enzymes involved in manganese oxidation in strain OF001 and A210 are unknown. Therefore, we analyze the genomes of two cylindrospermopsin-transforming MOB, Pseudomonas sp. OF001 and Rubrivivax sp. A210, to identify enzymes that could catalyze the oxidation of Mn2+. We also investigated specific metabolic features related to pollutant degradation and explored the metabolic potential of these two MOB with respect to the role they may play in biotechnological applications and/or in the environment. RESULTS: Strain OF001 encodes two multicopper oxidases and one haem peroxidase potentially involved in Mn2+ oxidation, with a high similarity to manganese-oxidizing enzymes described for Pseudomonas putida GB-1 (80, 83 and 42% respectively). Strain A210 encodes one multicopper oxidase potentially involved in Mn2+ oxidation, with a high similarity (59%) to the manganese-oxidizing multicopper oxidase in Leptothrix discophora SS-1. Strain OF001 and A210 have genes that might confer them the ability to remove aromatic compounds via the catechol meta- and ortho-cleavage pathway, respectively. Based on the genomic content, both strains may grow over a wide range of O2 concentrations, including microaerophilic conditions, fix nitrogen, and reduce nitrate and sulfate in an assimilatory fashion. Moreover, the strain A210 encodes genes which may convey the ability to reduce nitrate in a dissimilatory manner, and fix carbon via the Calvin cycle. Both MOB encode CRISPR-Cas systems, several predicted genomic islands, and phage proteins, which likely contribute to their genome plasticity. CONCLUSIONS: The genomes of Pseudomonas sp. OF001 and Rubrivivax sp. A210 encode sequences with high similarity to already described MCOs which may catalyze manganese oxidation required for cylindrospermopsin transformation. Furthermore, the analysis of the general metabolism of two MOB strains may contribute to a better understanding of the niches of cylindrospermopsin-removing MOB in natural habitats and their implementation in biotechnological applications to treat water.


Assuntos
Alcaloides , Burkholderiales/enzimologia , Manganês , Oxirredutases , Pseudomonas/enzimologia , Burkholderiales/genética , Toxinas de Cianobactérias , Genoma Bacteriano , Leptothrix , Oxirredução , Oxirredutases/metabolismo , Pseudomonas/genética
4.
Methods Mol Biol ; 2246: 169-205, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33576990

RESUMO

Direct-geneFISH is a Fluorescence In Situ Hybridization (FISH) method that directly links gene presence, and thus potential metabolic capabilities, to cell identity. The method uses rRNA-targeting oligonucleotide probes to identify cells and dsDNA polynucleotide probes carrying multiple molecules of the same fluorochrome to detect genes. In addition, direct-geneFISH allows quantification of the cell fraction carrying the targeted gene and the number of target genes per cell. It can be applied to laboratory cultures, for example, enrichments and phage infections, and to environmental samples. This book chapter describes the main steps of the direct-geneFISH protocol: probe design and synthesis, the "core" direct-geneFISH protocol and lastly, microscopy and data analysis.


Assuntos
Hibridização in Situ Fluorescente/métodos , Microbiota/genética , Análise de Célula Única/métodos , Bacteriófagos/genética , DNA/genética , Microscopia/métodos , Sondas de Oligonucleotídeos/genética , RNA Ribossômico/genética
5.
ISME Commun ; 1(1): 81, 2021 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-37938716

RESUMO

Gene clusters rich in carbohydrate-active enzymes within Flavobacteriia genera provide a competitiveness for their hosts to degrade diatom-derived polysaccharides. One such widely distributed polysaccharide is glucuronomannan, a main cell wall component of diatoms. A conserved gene cluster putatively degrading glucuronomannan was found previously among various flavobacterial taxa in marine metagenomes. Here, we aimed to visualize two glycoside hydrolase family 92 genes coding for α-mannosidases with fluorescently-labeled polynucleotide probes using direct-geneFISH. Reliable in situ localization of single-copy genes was achieved with an efficiency up to 74% not only in the flavobacterial strains Polaribacter Hel1_33_49 and Formosa Hel1_33_131 but also in planktonic samples from the North Sea. In combination with high-resolution microscopy, direct-geneFISH gave visual evidence of the contrasting lifestyles of closely related Polaribacter species in those samples and allowed for the determination of gene distribution among attached and free-living cells. We also detected highly similar GH92 genes in yet unidentified taxa by broadening probe specificities, enabling a visualization of the functional trait in subpopulations across the borders of species and genera. Such a quantitative insight into the niche separation of flavobacterial taxa complements our understanding of the ecology of polysaccharide-degrading bacteria beyond omics-based techniques on a single-cell level.

6.
Methods Mol Biol ; 1898: 1-26, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30570719

RESUMO

PhageFISH uses the power of fluorescence in situ hybridization to monitor intracellular phage infections at single cell level. It combines host cell identification via rRNA probes and phage identification via phage-specific gene probes, allowing for the quantification of the infected cell fraction and the discrimination between infection stages. This book chapter covers all aspects of the procedure, from phage probe design and synthesis, to the phageFISH protocol itself, to microscopy and image analysis.


Assuntos
Bacteriófagos/crescimento & desenvolvimento , Hibridização in Situ Fluorescente/métodos , Análise de Célula Única/métodos , Bacteriófagos/patogenicidade , Microscopia/métodos , Sondas de Oligonucleotídeos/genética
7.
Environ Microbiol ; 19(1): 70-82, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27348074

RESUMO

Although fluorescence in situ hybridization (FISH) with specific ribosomal RNA (rRNA)-targeted oligonucleotides is a standard method to detect and identify microorganisms, the specific detection of genes in bacteria and archaea, for example by using geneFISH, requires complicated and lengthy (> 30 h) procedures. Here we report a much improved protocol, direct-geneFISH, which allows specific gene and rRNA detection within less than 6 h. For direct-geneFISH, catalyzed amplification reporter deposition (CARD) steps are removed and fluorochrome-labelled polynucleotide gene probes and rRNA-targeted oligonucleotide probes are hybridized simultaneously. The protocol allows quantification of gene copy numbers per cell and the signal of the directly labelled probes enables a subcellular localization of the rRNA and target gene. The detection efficiencies of direct-geneFISH were first evaluated on Escherichia coli carrying the target gene on a copy-control vector. We could show that gene copy numbers correlated to the geneFISH signal within the cells. The new protocol was then applied for the detection of the sulfate thiolhydrolase (soxB) genes in cells of the gammaproteobacterial clade SUP05 in Lake Rogoznica, Croatia. Cell and gene detection efficiencies by direct-geneFISH were statistically identical to those obtained with the original geneFISH, demonstrating the suitability of the simpler and faster protocol for environmental samples.


Assuntos
Escherichia coli/genética , Gammaproteobacteria/genética , Dosagem de Genes/genética , Hibridização in Situ Fluorescente/métodos , Sondas de Oligonucleotídeos/genética , RNA Ribossômico/genética , Croácia , Lagos/microbiologia
8.
Environ Microbiol ; 15(8): 2306-18, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23489642

RESUMO

Microbes drive the biogeochemical cycles that fuel planet Earth, and their viruses (phages) alter microbial population structure, genome repertoire, and metabolic capacity. However, our ability to understand and quantify phage-host interactions is technique-limited. Here, we introduce phageFISH - a markedly improved geneFISH protocol that increases gene detection efficiency from 40% to > 92% and is optimized for detection and visualization of intra- and extracellular phage DNA. The application of phageFISH to characterize infection dynamics in a marine podovirus-gammaproteobacterial host model system corroborated classical metrics (qPCR, plaque assay, FVIC, DAPI) and outperformed most of them to reveal new biology. PhageFISH detected both replicating and encapsidated (intracellular and extracellular) phage DNA, while simultaneously identifying and quantifying host cells during all stages of infection. Additionally, phageFISH allowed per-cell relative measurements of phage DNA, enabling single-cell documentation of infection status (e.g. early vs late stage infections). Further, it discriminated between two waves of infection, which no other measurement could due to population-averaged signals. Together, these findings richly characterize the infection dynamics of a novel model phage-host system, and debut phageFISH as a much-needed tool for studying phage-host interactions in the laboratory, with great promise for environmental surveys and lineage-specific population ecology of free phages.


Assuntos
Bacteriófagos/genética , Interações Hospedeiro-Patógeno , Espaço Intracelular/virologia , Podoviridae/fisiologia , Pseudoalteromonas/virologia , Virologia/métodos , Reprodutibilidade dos Testes , Água do Mar/microbiologia , Água do Mar/virologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...