Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38652177

RESUMO

The concept of a solid catalyst with an ionic liquid layer (SCILL) is a promising approach to improve the selectivity of noble metal catalysts in heterogeneous reactions. In order to understand the origins of this selectivity control, we investigated the growth and thermal stability of ultrathin 1-ethyl-3-methylimidazolium trifluormethanesulfonate [C2C1Im][OTf] films on Pt(111) by infrared reflection absorption spectroscopy (IRAS) and X-ray photoelectron spectroscopy (XPS) in time-resolved and temperature-programmed experiments. We combined these spectroscopy experiments with scanning tunneling microscopy (STM) to obtain detailed insights into the orientation and adsorption geometry of the ions in the first IL layer. Furthermore, we propose a mechanism for the thermal evolution of [C2C1Im][OTf] on Pt(111). We observe an intact IL layer on the surface at temperatures below 200 K. Adsorbed [C2C1Im][OTf] forms islands, which are evenly distributed over the surface. The [OTf]- anion adsorbs via the SO3 group, with the molecular axis perpendicular to the surface. Anions and cations are arranged next to each other, alternating on the Pt(111) surface. Upon heating to 250 K, we observe changes in geometry and structural distribution. Whereas at low temperature, the ions are arranged alternately for electrostatic reasons, this driving force is no longer decisive at 250 K. Here, a phase separation of two different species is discernible in STM. We propose that this effect is due to a surface reaction, which changes the charge of the adsorbates. We assume that the IL starts to decompose at around 250 K, and thus, pristine IL and decomposition products coexist on the surface. Also, IRAS and XPS show indication of IL decomposition. Further heating leads to increased IL decomposition. The reaction products associated with the anions are volatile and leave the surface. In contrast, the cation fragments remain on the surface up to temperatures above 420 K.

2.
Phys Chem Chem Phys ; 25(43): 29808-29815, 2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-37886831

RESUMO

Atomically defined MnO(001) thin films were grown on an Au(111) substrate, and their interaction with water (D2O) was investigated by infrared reflection absorption spectroscopy (IRAS) and thermal desorption spectroscopy (TDS). Carbon monoxide adsorption experiments were performed to probe surface atoms and defects on oxide films. Next, water interaction was investigated from which an associative binding pathway and a dissociative binding pathway were revealed, where the water molecules adsorb at terraces and water dissociation takes place at oxygen vacancies mediated by nearby Mn2+ sites. The IRAS data are supported by TDS experiments, which also manifest the importance of defects in the adsorption characteristics of MnO.

3.
Nanomaterials (Basel) ; 12(17)2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-36080076

RESUMO

Although clean energy generation utilizing the Oxygen Reduction Reaction (ORR) can be considered a promising strategy, this approach remains challenging by the dependence on high loadings of noble metals, mainly Platinum (Pt). Therefore, efforts have been directed to develop new and efficient electrocatalysts that could decrease the Pt content (e.g., by nanotechnology tools or alloying) or replace them completely in these systems. The present investigation shows that high catalytic activity can be reached towards the ORR by employing 1.8 ± 0.7 nm Ir nanoparticles (NPs) deposited onto MnO2 nanowires surface under low Ir loadings (1.2 wt.%). Interestingly, we observed that the MnO2-Ir nanohybrid presented high catalytic activity for the ORR close to commercial Pt/C (20.0 wt.% of Pt), indicating that it could obtain efficient performance using a simple synthetic procedure. The MnO2-Ir electrocatalyst also showed improved stability relative to commercial Pt/C, in which only a slight activity loss was observed after 50 reaction cycles. Considering our findings, the superior performance delivered by the MnO2-Ir nanohybrid may be related to (i) the significant concentration of reduced Mn3+ species, leading to increased concentration of oxygen vacancies at its surface; (ii) the presence of strong metal-support interactions (SMSI), in which the electronic effect between MnOx and Ir may enhance the ORR process; and (iii) the unique structure comprised by Ir ultrasmall sizes at the nanowire surface that enable the exposure of high energy surface/facets, high surface-to-volume ratios, and their uniform dispersion.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...