Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Glia ; 72(7): 1319-1339, 2024 07.
Artigo em Inglês | MEDLINE | ID: mdl-38577970

RESUMO

Neuroinflammation and chronic activation of microglial cells are the prominent features of amyotrophic lateral sclerosis (ALS) pathology. While alterations in the mRNA profile of diseased microglia have been well documented, the actual microglia proteome remains poorly characterized. Here we performed a functional characterization together with proteome analyses of microglial cells at different stages of disease in the SOD1-G93A model of ALS. Functional analyses of microglia derived from the lumbar spinal cord of symptomatic mice revealed: (i) remarkably high mitotic index (close to 100% cells are Ki67+) (ii) significant decrease in phagocytic capacity when compared to age-matched control microglia, and (iii) diminished response to innate immune challenges in vitro and in vivo. Proteome analysis revealed a development of two distinct molecular signatures at early and advanced stages of disease. While at early stages of disease, we identified several proteins implicated in microglia immune functions such as GPNMB, HMBOX1, at advanced stages of disease microglia signature at protein level was characterized with a robust upregulation of several unconventional proteins including rootletin, major vaults proteins and STK38. Upregulation of GPNMB and rootletin has been also found in the spinal cord samples of sporadic ALS. Remarkably, the top biological functions of microglia, in particular in the advanced disease, were not related to immunity/immune response, but were highly enriched in terms linked to RNA metabolism. Together, our results suggest that, over the course of disease, chronically activated microglia develop unconventional protein signatures and gradually lose their immune identity ultimately turning into functionally inefficient immune cells.


Assuntos
Esclerose Lateral Amiotrófica , Camundongos Transgênicos , Microglia , Proteoma , Esclerose Lateral Amiotrófica/metabolismo , Esclerose Lateral Amiotrófica/imunologia , Esclerose Lateral Amiotrófica/patologia , Esclerose Lateral Amiotrófica/genética , Microglia/metabolismo , Microglia/imunologia , Animais , Proteoma/metabolismo , Camundongos , Medula Espinal/metabolismo , Medula Espinal/patologia , Medula Espinal/imunologia , Modelos Animais de Doenças , Fagocitose/fisiologia , Humanos , Feminino , Camundongos Endogâmicos C57BL , Masculino
2.
Front Aging Neurosci ; 11: 42, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30873018

RESUMO

Age is a recognized risk factor for amyotrophic lateral sclerosis (ALS), a paralytic disease characterized by progressive loss of motor neurons and neuroinflammation. A hallmark of aging is the accumulation of senescent cells. Yet, the pathogenic role of cellular senescence in ALS remains poorly understood. In rats bearing the ALS-linked SOD1G93A mutation, microgliosis contribute to motor neuron death, and its pharmacologic downregulation results in increased survival. Here, we have explored whether gliosis and motor neuron loss were associated with cellular senescence in the spinal cord during paralysis progression. In the lumbar spinal cord of symptomatic SOD1G93A rats, numerous cells displayed nuclear p16INK4a as well as loss of nuclear Lamin B1 expression, two recognized senescence-associated markers. The number of p16INK4a-positive nuclei increased by four-fold while Lamin B1-negative nuclei increased by 1,2-fold, respect to non-transgenic or asymptomatic transgenic rats. p16INK4a-positive nuclei and Lamin B1-negative nuclei were typically localized in a subset of hypertrophic Iba1-positive microglia, occasionally exhibiting nuclear giant multinucleated cell aggregates and abnormal nuclear morphology. Next, we analyzed senescence markers in cell cultures of microglia obtained from the spinal cord of symptomatic SOD1G93A rats. Although microglia actively proliferated in cultures, a subset of them developed senescence markers after few days in vitro and subsequent passages. Senescent SOD1G93A microglia in culture conditions were characterized by large and flat morphology, senescence-associated beta-Galactosidase (SA-ß-Gal) activity as well as positive labeling for p16INK4a, p53, matrix metalloproteinase-1 (MMP-1) and nitrotyrosine, suggesting a senescent-associated secretory phenotype (SASP). Remarkably, in the degenerating lumbar spinal cord other cell types, including ChAT-positive motor neurons and GFAP-expressing astrocytes, also displayed nuclear p16INK4a staining. These results suggest that cellular senescence is closely associated with inflammation and motor neuron loss occurring after paralysis onset in SOD1G93A rats. The emergence of senescent cells could mediate key pathogenic mechanisms in ALS.

3.
Neuroimmunomodulation ; 24(3): 143-153, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29131016

RESUMO

OBJECTIVE: We aimed to determine the potential of aberrant glial cells (AbAs) isolated from the spinal cord of adult SOD1G93A symptomatic rats to induce gliosis and neuronal damage following focal transplantation into the lumbar spinal cord of wild-type rats. METHODS: AbAs were obtained from the spinal cords of SOD1G93A symptomatic rats. One hundred thousand cells were injected using a glass micropipette into the lumbar spinal cords (L3-L5) of syngeneic wild-type adult rats. Equal volumes of culture medium or wild-type neonatal microglia were used as controls. Seven days after transplantation, immunohistochemistry analysis was carried out using astrocytic and microglia cell markers. Transplanted SOD1G93A AbAs were recognized by specific antibodies to human SOD1 (hSOD1) or misfolded human SOD1. RESULTS: Seven days after transplantation, AbAs were mainly detected in the medial region of the lumbar ventral horn as a well-limited cell cluster formed at the site of injection by their immunoreactivity to either misfolded SOD1 or normally folded hSOD1. Compared with controls, transplanted AbAs were surrounded by marked microgliosis and reactive astrocytes. Marked microgliosis was observed to extend bilaterally up to the cervical cord. Motor neurons close to AbA transplants were surrounded by activated glial cells and displayed ubiquitin aggregation. CONCLUSIONS: AbAs bearing mutant SOD1G93A have the potential to induce neuroinflammation along the spinal cord and incipient damage to the motor neurons. The emergence of AbAs during amyotrophic lateral sclerosis pathogenesis may therefore be a mechanism to boost neuroinflammation and spread motor neuron damage along the neuroaxis.


Assuntos
Gliose/etiologia , Mutação/genética , Neuroglia/transplante , Medula Espinal/patologia , Superóxido Dismutase/genética , Animais , Proteínas de Ligação ao Cálcio/metabolismo , Lateralidade Funcional , Proteína Glial Fibrilar Ácida/metabolismo , Gliose/genética , Masculino , Proteínas dos Microfilamentos/metabolismo , Neurônios Motores/patologia , Neuroglia/metabolismo , Ratos , Ratos Transgênicos , Superóxido Dismutase/metabolismo , Ubiquitina/metabolismo
4.
JCI Insight ; 2(20)2017 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-29046475

RESUMO

Evidence indicates that neuroinflammation contributes to motor neuron degeneration in amyotrophic lateral sclerosis (ALS), a fatal neurodegenerative disease leading to progressive muscular paralysis. However, it remains elusive whether inflammatory cells can interact with degenerating distal motor axons, influencing the progressive denervation of neuromuscular junctions (NMJs). By analyzing the muscle extensor digitorum longus (EDL) following paralysis onset in the SOD1G93A rat model, we have observed a massive infiltration and degranulation of mast cells, starting after paralysis onset and correlating with progressive NMJ denervation. Remarkably, mast cells accumulated around degenerating motor axons and NMJs, and were also associated with macrophages. Mast cell accumulation and degranulation in paralytic EDL muscle was prevented by systemic treatment over 15 days with masitinib, a tyrosine kinase inhibitor currently in clinical trials for ALS exhibiting pharmacological activity affecting mast cells and microglia. Masitinib-induced mast cell reduction resulted in a 35% decrease in NMJ denervation and reduced motor deficits as compared with vehicle-treated rats. Masitinib also normalized macrophage infiltration, as well as regressive changes in Schwann cells and capillary networks observed in advanced paralysis. These findings provide evidence for mast cell contribution to distal axonopathy and paralysis progression in ALS, a mechanism that can be therapeutically targeted by masitinib.


Assuntos
Esclerose Lateral Amiotrófica/patologia , Mastócitos/patologia , Doenças Neuromusculares/patologia , Animais , Axônios/patologia , Benzamidas , Modelos Animais de Doenças , Masculino , Músculo Esquelético , Junção Neuromuscular/patologia , Piperidinas , Piridinas , Ratos , Tiazóis/farmacologia
5.
Neurosci Lett ; 636: 27-31, 2017 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-27473942

RESUMO

Amyotrophic Lateral Sclerosis (ALS) is a paradigmatic neurodegenerative disease, characterized by progressive paralysis of skeletal muscles associated with motor neuron degeneration. It is well-established that glial cells play a key role in ALS pathogenesis. In transgenic rodent models for familial ALS reactive astrocytes, microglia and oligodendrocyte precursors accumulate in the degenerating spinal cord and appear to contribute to primary motor neuron death through a non-cell autonomous pathogenic mechanism. Furthermore in rats expressing the ALS-linked SOD1G93A mutation, rapid spread of paralysis coincides with emergence of neurotoxic and proliferating aberrant glia cells with an astrocyte-like phenotype (AbA cells) that are found surrounding damaged motor neurons. AbAs simultaneously express astrocytic markers GFAP, S100ß and Connexin-43 along with microglial markers Iba-1, CD11b and CD163. Studies with cell cultures have shown that AbAs originate from inflammatory microglial cells that undergo phenotypic transition. Because AbAs appear only after paralysis onset and exponentially increase in parallel with disease progression, they appear to actively contribute to ALS progression. While several reviews have been published on the pathogenic role of glial cells in ALS, this review focuses on emergence and pro-inflammatory activity of AbAs as part of an increasingly complex neurodegenerative microenvironment during ALS disease development.


Assuntos
Esclerose Lateral Amiotrófica/patologia , Neuroglia/patologia , Esclerose Lateral Amiotrófica/metabolismo , Animais , Astrócitos/patologia , Encéfalo/patologia , Microambiente Celular , Humanos , Microglia/patologia , Neurônios Motores/patologia , Mutação , Fenótipo , Medula Espinal/patologia , Superóxido Dismutase-1/genética , Superóxido Dismutase-1/metabolismo
6.
J Neuroinflammation ; 13(1): 177, 2016 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-27400786

RESUMO

BACKGROUND: In the SOD1(G93A) mutant rat model of amyotrophic lateral sclerosis (ALS), neuronal death and rapid paralysis progression are associated with the emergence of activated aberrant glial cells that proliferate in the degenerating spinal cord. Whether pharmacological downregulation of such aberrant glial cells will decrease motor neuron death and prolong survival is unknown. We hypothesized that proliferation of aberrant glial cells is dependent on kinase receptor activation, and therefore, the tyrosine kinase inhibitor masitinib (AB1010) could potentially control neuroinflammation in the rat model of ALS. METHODS: The cellular effects of pharmacological inhibition of tyrosine kinases with masitinib were analyzed in cell cultures of microglia isolated from aged symptomatic SOD1(G93A) rats. To determine whether masitinib prevented the appearance of aberrant glial cells or modified post-paralysis survival, the drug was orally administered at 30 mg/kg/day starting after paralysis onset. RESULTS: We found that masitinib selectively inhibited the tyrosine kinase receptor colony-stimulating factor 1R (CSF-1R) at nanomolar concentrations. In microglia cultures from symptomatic SOD1(G93A) spinal cords, masitinib prevented CSF-induced proliferation, cell migration, and the expression of inflammatory mediators. Oral administration of masitinib to SOD1(G93A) rats starting after paralysis onset decreased the number of aberrant glial cells, microgliosis, and motor neuron pathology in the degenerating spinal cord, relative to vehicle-treated rats. Masitinib treatment initiated 7 days after paralysis onset prolonged post-paralysis survival by 40 %. CONCLUSIONS: These data show that masitinib is capable of controlling microgliosis and the emergence/expansion of aberrant glial cells, thus providing a strong biological rationale for its use to control neuroinflammation in ALS. Remarkably, masitinib significantly prolonged survival when delivered after paralysis onset, an unprecedented effect in preclinical models of ALS, and therefore appears well-suited for treating ALS.


Assuntos
Esclerose Lateral Amiotrófica/complicações , Encefalite/tratamento farmacológico , Encefalite/etiologia , Paralisia/tratamento farmacológico , Paralisia/etiologia , Inibidores de Proteínas Quinases/uso terapêutico , Tiazóis/uso terapêutico , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/mortalidade , Animais , Benzamidas , Morte Celular , Modelos Animais de Doenças , Progressão da Doença , Humanos , Masculino , Neurônios Motores/efeitos dos fármacos , Neurônios Motores/metabolismo , Mutação/genética , Neuroglia/efeitos dos fármacos , Neuroglia/metabolismo , Piperidinas , Piridinas , Ratos , Ratos Transgênicos , Medula Espinal/patologia , Superóxido Dismutase/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...