Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 2023 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-37924293

RESUMO

Cocrystallization of a cis-azobenzene dye with volatile molecules, such as pyrazine and dioxane, leads to materials that exhibit at least three different light-intensity-dependent responses upon irradiation with low-power visible light. The halogen-bond-driven assembly of the dye cis-(p-iodoperfluorophenyl)azobenzene with volatile halogen bond acceptors produces cocrystals whose light-induced behavior varies significantly depending on the intensity of the light applied. Low-intensity (<1 mW·cm-2) light irradiation leads to a color change associated with low levels of cis → trans isomerization. Irradiation at higher intensities (150 mW·mm-2) produces photomechanical bending, caused by more extensive isomerization of the dye. At still higher irradiation intensities (2.25 W·mm-2) the cocrystals undergo cold photocarving; i.e., they can be cut and written on with micrometer precision using laser light without a major thermal effect. Real-time Raman spectroscopy shows that this novel photochemical behavior differs from what would be expected from thermal energy input alone. Overall, this work introduces a rational blueprint, based on supramolecular chemistry in the solid state, for new types of crystalline light-responsive materials, which not only respond to being exposed to light but also change their response based on the light intensity.

2.
Chem Sci ; 14(45): 13031-13041, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-38023516

RESUMO

Carbon, although the central element in organic chemistry, has been traditionally neglected as a target for directional supramolecular interactions. The design of supramolecular structures involving carbon-rich molecules, such as arene hydrocarbons, has been limited almost exclusively to non-directional π-stacking, or derivatisation with heteroatoms to introduce molecular assembly recognition sites. As a result, the predictable assembly of non-derivatised, carbon-only π-systems using directional non-covalent interactions remains an unsolved fundamental challenge of solid-state supramolecular chemistry. Here, we propose and validate a different paradigm for the reliable assembly of carbon-only aromatic systems into predictable supramolecular architectures: not through non-directional π-stacking, but via specific and directional halogen bonding. We present a systematic experimental, theoretical and database study of halogen bonds to carbon-only π-systems (C-I⋯πC bonds), focusing on the synthesis and structural analysis of cocrystals with diversely-sized and -shaped non-derivatised arenes, from one-ring (benzene) to 15-ring (dicoronylene) polycyclic atomatic hydrocarbons (PAHs), and fullerene C60, along with theoretical calculations and a systematic analysis of the Cambridge Structural Database. This study establishes C-I⋯πC bonds as directional interactions to arrange planar and curved carbon-only aromatic systems into predictable supramolecular motifs. In >90% of herein presented structures, the C-I⋯πC bonds to PAHs lead to a general ladder motif, in which the arenes act as the rungs and halogen bond donors as the rails, establishing a unique example of a supramolecular synthon based on carbon-only molecules. Besides fundamental importance in the solid-state and supramolecular chemistry of arenes, this synthon enables access to materials with exciting properties based on simple, non-derivatised aromatic systems, as seen from large red and blue shifts in solid-state luminescence and room-temperature phosphorescence upon cocrystallisation.

3.
Chem Sci ; 14(27): 7475-7481, 2023 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-37449073

RESUMO

We demonstrate the use of a metal surface to directly catalyse copper-catalysed alkyne-azide click-coupling (CuAAC) reactions under the conditions of Resonant Acoustic Mixing (RAM) - a recently introduced and scalable mechanochemical methodology that uniquely eliminates the need for bulk solvent, as well as milling media. By using a simple copper coil as a catalyst, this work shows that direct mechanocatalysis can occur in an impact-free environment, relying solely on high-speed mixing of reagents against a metal surface, without the need for specially designed milling containers and media. By introducing an experimental setup that enables real-time Raman spectroscopy monitoring of RAM processes, we demonstrate 0th-order reaction kinetics for several selected CuAAC reactions, supporting surface-based catalysis. The herein presented RAM-based direct mechanocatalysis methodology is simple, enables the effective one-pot, two-step synthesis of triazoles via a combination of benzyl azide formation and CuAAC reactions on a wide scope of reagents, provides control over reaction stoichiometry that is herein shown to be superior to that seen in solution or by using more conventional CuCl catalyst, and is applied for simple gram-scale synthesis of the anticonvulsant drug Rufinamide.

4.
Phys Chem Chem Phys ; 25(7): 5673-5684, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36734510

RESUMO

The trans-cis-trans isomerization behaviour of Bismarck Brown Y (BBY) during and after irradiation with visible light, was characterized in detail for the first time by means of optical pump-probe experiments, to study the geometric inter-conversion of bis-azobenzene both in solution and embedded in multi-layered polymeric thin films. The rate constants observed for the thermal cis-trans back isomerization permit a determination of how the thermal isomerization is influenced by its local environment. In both solution and when incorporated into multi-layered thin films, the thermal relaxation observed for the commercial azo dye BBY showed a highly unusual biexponential decay, which clearly demonstrates two distinct isomerization processes. The cis decay showed an anomalous fast isomerization process on the timescale of milliseconds, followed by a slower isomerization process with a cis lifetime on the order of seconds. It was further observed that the faster isomerization process was influenced more by its local environment than was the slower process. The faster isomerization process also displayed a higher rate constant in aprotic solvents such as THF and DMF compared to that observed in protic solvents such as ethanol and water. Additionally, a higher rate constant was observed in solution compared to the multi-layered thin films where motion of the azo molecules was likely more restricted. Following recrystallization of the BBY azo dye, the more expected monoexponential decay was observed for the cis isomer in solution, with a single cis lifetime calculated on the timescale of seconds. This timescale corresponded well to values predicted by density functional theory calculations.

5.
Faraday Discuss ; 241(0): 128-149, 2023 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-36239309

RESUMO

Resonant acoustic mixing (RAM) offers a simple, efficient route for mechanochemical synthesis in the absence of milling media or bulk solvents. Here, we show the use of RAM to conduct the copper-catalysed coupling of sulfonamides and carbodiimides. This coupling was previously reported to take place only by mechanochemical ball milling, while in conventional solution environments it is not efficient, or does not take place at all. The results demonstrate RAM as a suitable methodology to conduct reactions previously accessed only by ball milling and provide a detailed, systematic overview of how the amount of liquid additive, measured by the ratio of liquid volume to weight of reactants (η, in µL mg-1), can affect the course of a mechanochemical reaction and the polymorphic composition of its product. Switching from ball milling to RAM allowed for the discovery of a new polymorph of the model sulfonylguanidine obtained by catalytic coupling of di(cyclohexyl)carbodiimide (DCC) and p-toluenesulfonamide, and the ability to control reaction temperature in RAM enabled in situ control of the polymorphic behaviour of this nascent product. We show that the reaction conversion for a given reaction time does not change monotonically but, instead, achieves a maximum for a well-defined η-value. This "η-sweet-spot" of conversion is herein designated ηmax. The herein explored reactions demonstrate sensitivity to η on the order of 0.01 µL mg-1, which corresponds to an amount of liquid additive below 5 mol% compared to the reactants, and is at least one to two orders of magnitude lower than the η-value typically considered in the design of liquid-assisted ball milling mechanochemical reactions. Such sensitivity suggests that strategies to optimise liquid-assisted mechanochemical reactions should systematically evaluate η-values at increments of 0.01 µL mg-1, or even finer. At η-values other than ηmax the reaction conversion drops off, demonstrating that the same liquid additive can act either as a catalyst or an inhibitor of a mechanochemical reaction, depending on the amount.

6.
ACS Appl Mater Interfaces ; 14(42): 48143-48149, 2022 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-36197073

RESUMO

Photoalignment control of hierarchical structures is a key process to enhance the properties of optical and mechanical materials. We developed an in situ molecular alignment method, where photopolymerization with the scanned slit light causes molecular flow, leading to two-dimensional precise alignment of molecules over large areas; however, the alignment control has been explored only on a molecular scale. In this study, we demonstrate this photopolymerization-induced molecular flow, enabling mesoscopic alignment of smectic layer structures composed of anisotropic molecules. Side-chain liquid-crystalline polymers were obtained from two different monomers with or without alkyl spacers by photopolymerization with one-dimensionally scanned slit light. The polymer with an alkyl spacer displayed mesogens aligned parallel to the scanning direction, while the polymer with no alkyl spacer resulted in perpendicular alignment of mesogens to the scanning direction, regulated by the alignment of the polymer main chain along the light scanning direction. Moreover, the polymerization with the scanned light aligned not only the mesogens but also mesoscopic smectic layer structures over large areas, depending on the structure and scanning pattern of light. We envision that such a simple polymerization technique could become a powerful and versatile alignment platform of anisotropic materials in a wide range of scales.

7.
Macromol Rapid Commun ; 43(9): e2200063, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35257431

RESUMO

A natural polysaccharide-based smart photo-actuator is fabricated via electrospinning of cellulose 4-phenyl azobenzoate (Azo-Cel) from its organic solution in a mixture of high-volatile acetone, a poor solvent of Azo-Cel, and low-volatile N,N-dimethylacetamide (DMAc), a good solvent of Azo-Cel. At an optimal polymer concentration (17 wt%) and solvent mixing ratio (acetone/DMAc = 3/2 (v/v)), stable electrified polymer jets are formed and continuous nanofibers and their nonwoven fabric can be drawn on a cylinder-shaped rotating drum electrode under a high electric field (25 kV). Scanning electron microscopic observation of the Azo-Cel fabric confirms that the fabric consists of uniaxially aligned nanofibers with a mean diameter of 207 nm. The water contact angle of the Azo-Cel fabric reversibly decreases and increases in response to alternate irradiation with UV and visible light to induce geometric deformation of the azobenzene moiety between the trans and cis isomers, which lead to lower and higher surface free energies, respectively. In addition, self-standing Azo-Cel fabric exhibits a UV-driven photo-mechanical asymmetric bending deformation toward the light source.


Assuntos
Celulose , Nanofibras , Acetona , Polímeros , Solventes
8.
Angew Chem Int Ed Engl ; 60(46): 24400-24405, 2021 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-34293249

RESUMO

We report the first X-ray single crystal structures of hypochlorite (ClO- ) and hypobromite (BrO- ) salts, including hydrated sodium hypochlorite, a staple of the chlorine industry and ubiquitous bleaching and disinfection agent for almost 200 years. The structures, supported by variable-temperature Raman spectroscopy on individual crystals and periodic density-functional theory (DFT) calculations, provide insight into solid-state geometry and supramolecular chemistry of hypohalite ions.

9.
Phys Chem Chem Phys ; 23(1): 300-310, 2021 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-33346762

RESUMO

We study here the role of polyelectrolyte chain length, that is number of repeat units (mers), in the competitive adsorption of a simple model polyanion, poly(acrylic acid), onto 85 nm spherical silica particles capped with a model polycation, poly(allylamine hydrochloride). Performing fluorescence spectroscopy experiments, we measured chain-length dependence of dilute aqueous polyelectrolyte adsorption, at full surface coverage, onto an oppositely charged polyelectrolyte overtop spherical silica nanoparticles (10-3 g L-1). Preferential adsorption was determined by comparing the characteristic fluorescence intensities of the two fluorophore-labeled and narrowly disperse polyacrylic acid samples (NMA-PAA450k and Dan-PAA2k) of 450k- and 2k-molecular weight (6250- and 28-mers), respectively. To compare and validate experimental results, a lattice model was developed for computing the probabilities of the different arrangements of two polymer chain lengths of polyacrylic acid on the surface of the silica nanosphere. We then determined which numbers of long and short adsorbed chains corresponded to the most configurations in our model. Both spectroscopic experiment results and the combinatorial model demonstrated that there is an entropic preference for complete adsorption of the longer 450k polyacrylic acid chain vs. 2k. This study provides insights on entropy driven chain-length dependence of polyelectrolyte adsorption onto spherical nanoparticle surfaces for directing and optimizing their layer-by-layer self-assembly in organic films.

10.
Macromol Biosci ; 19(5): e1900036, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30938926

RESUMO

Poly-d-lysine (PDL) and poly-l-lysine are standard surfaces for culturing neural cells; however, both are relatively unstable, costly, and the coated surface typically must be prepared immediately before use. Here, polyelectrolyte multilayers (PEMs) are employed as highly stable, relatively inexpensive, alternative substrates to support primary neural cell culture. Initial findings identify specific silk-based PEMs that significantly outperform the capacity of PDL to promote neuronal survival and process extension. Based on these results, a library of PEM variants, including commercial and bio-sourced polyelectrolytes, is generated and three silk-based PEMs that substantially outperform PDL as a substrate for primary neurons in cell culture are identified. Further, testing these PEM variants as substrates for primary oligodendrocyte progenitors demonstrates that one silk-based PEM functions significantly better than PDL. These findings reveal specificity of cellular responses, indicating that PEMs may be tuned to optimally support different neural cell types.


Assuntos
Proliferação de Células , Matriz Extracelular/química , Neurônios/metabolismo , Polieletrólitos , Polilisina , Animais , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Neurônios/citologia , Polieletrólitos/química , Polieletrólitos/farmacologia , Polilisina/química , Polilisina/farmacologia , Ratos , Ratos Sprague-Dawley , Propriedades de Superfície
11.
Acta Crystallogr E Crystallogr Commun ; 74(Pt 10): 1486-1490, 2018 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-30319807

RESUMO

cis-4,4'-(Diazenediyl)bis(2,3,5,6-tetrafluorobenzoic acid), C14H2F8N2O4, and its ethanol disolvate, C14H2F8N2O4·2C2H5OH, represent new examples of self-stabilized cis-configured azo-benzenes obtained by a common crystallization procedure at room temperature under normal laboratory lighting conditions. The target structure constitutes of two 2,3,5,6-tetra-fluoro-benzoic acid residues linked to each other by a cis-configured azo group and was confirmed for two isolated specimens extracted from the same sample, corresponding to a solvent-free form and an ethanol disolvate. In the solvent-free form, the mol-ecule is characterized by rotational symmetry around a twofold rotation axis bis-ecting its central N=N bond while this symmetry is not present in the solvated form. The values of the inclination angles of the terminal carboxyl groups towards the corresponding benzene rings vary from 5.2 (4) to 45.7 (2)°, depending on the crystal composition. In the unsolvated form, the mol-ecules are linked through identical hydrogen bonds with a classical R 2 2(8) graph-set ring motif of carb-oxy-lic acids, by generating supra-molecular chains running approximately parallel to [101]. The presence of ethanol in the solvated form also leads to changes in the short-contact pattern to produce both the R 4 4(12) ring and open-chain motifs with alternating alcohol and di-carb-oxy-lic acid mol-ecules.

12.
Acta Crystallogr E Crystallogr Commun ; 74(Pt 5): 724-727, 2018 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-29850100

RESUMO

The title salt, C8H22N22+·C14H8N2O42-·H2O, represents a pseudo-polymer ionic material, resulting from the self-organizing behavior of 4,4'-azinodibenzoate dianions and doubly protonated, 1,8-diaminium-octane cations in aqueous solution. The asymmetric unit consists of two halves of octane 1,8-diaminium cations (the complete cations are both generated by crystallographic inversion symmetry), a 4,4'-azinodibenzoate anion [dihedral angle between the aromatic rings = 10.22 (4)°] and a water mol-ecule of crystallization. One of the cations is in a fully extended linear conformation while the second one has a terminal C-C-C-N gauche conformation. In the crystal, the cations, anions and water mol-ecules are linked into a three-dimensional network via a complex pattern of charge-assisted N-H⋯O and O-H⋯O hydrogen bonds.

13.
Langmuir ; 34(30): 8709-8730, 2018 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-29481757

RESUMO

Growing primary cells and tissue in long-term cultures, such as primary neural cell culture, presents many challenges. A critical component of any environment that supports neural cell growth in vivo is an appropriate 2-D surface or 3-D scaffold, typically in the form of a thin polymer layer that coats an underlying plastic or glass substrate and aims to mimic critical aspects of the extracellular matrix. A fundamental challenge to mimicking a hydrophilic, soft natural cell environment is that materials with these properties are typically fragile and are difficult to adhere to and stabilize on an underlying plastic or glass cell culture substrate. In this review, we highlight the current state of the art and overview recent developments of new artificial extracellular matrix (ECM) surfaces for in vitro neural cell culture. Notably, these materials aim to strike a balance between being hydrophilic and soft while also being thick, stable, robust, and bound well to the underlying surface to provide an effective surface to support long-term cell growth. We focus on improved surface and scaffold coating systems that can mimic the natural physicochemical properties that enhance neuronal survival and growth, applied as soft hydrophilic polymer coatings for both in vitro cell culture and for implantable neural probes and 3-D matrixes that aim to enhance stability and longevity to promote neural biocompatibility in vivo. With respect to future developments, we outline four emerging principles that serve to guide the development of polymer assemblies that function well as artificial ECMs: (a) design inspired by biological systems and (b) the employment of principles of aqueous soft bonding and self-assembly to achieve (c) a high-water-content gel-like coating that is stable over time in a biological environment and possesses (d) a low modulus to more closely mimic soft, compliant real biological tissue. We then highlight two emerging classes of thick material coatings that have successfully captured these guiding principles: layer-by-layer deposited water-soluble polymers (LbL) and silk fibroin (SF) materials. Both materials can be deposited from aqueous solution yet transition to a water-insoluble coating for long-term stability while retaining a softness and water content similar to those of biological materials. These materials hold great promise as next-generation biocompatible coatings for tissue engineers and for chemists and biologists within the biomedical field.


Assuntos
Técnicas de Cultura de Células/métodos , Matriz Extracelular/química , Polímeros/química , Engenharia Tecidual , Técnicas de Cultura de Células/instrumentação , Proliferação de Células , Materiais Revestidos Biocompatíveis , Vidro , Plásticos
14.
Macromol Rapid Commun ; 39(1)2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28692758

RESUMO

The development of stimuli-responsive polymers is among the key goals of modern materials science. The structure and properties of such switchable materials can be designed to be controlled via various stimuli, among which light is frequently the most powerful trigger. Light is a gentle energy source that can target materials remotely, and with extremely high spatial and temporal resolution easily and cheaply. Reversible light-control over molecular mechanical properties in particular has in recent years attracted great interest due to potential applications as optical-to-mechanical conversion actuators and 'devices', enabling 'molecular robotic machines'. In this review, some recent examples and emerging trends in this exciting field of research are highlighted, covering a wide variety of polymer hosts that contain azobenzene photo-reversible switches. It is hoped that this review will help stimulate more interest towards the development of light-reversible materials for energy harvesting and conversion, and their successful incorporation into a wide variety of current and future high-tech applications in devices.


Assuntos
Compostos Azo/química , Polímeros/química , Luz Solar , Estrutura Molecular
15.
Sci Adv ; 3(11): e1701610, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-29152567

RESUMO

Hierarchical control of two-dimensional (2D) molecular alignment patterns over large areas is essential for designing high-functional organic materials and devices. However, even by the most powerful current methods, dye molecules that discolor and destabilize the materials need to be doped in, complicating the process. We present a dye-free alignment patterning technique, based on a scanning wave photopolymerization (SWaP) concept, that achieves a spatial light-triggered mass flow to direct molecular order using scanning light to propagate the wavefront. This enables one to generate macroscopic, arbitrary 2D alignment patterns in a wide variety of optically transparent polymer films from various polymerizable mesogens with sufficiently high birefringence (>0.1) merely by single-step photopolymerization, without alignment layers or polarized light sources. A set of 150,000 arrays of a radial alignment pattern with a size of 27.4 µm × 27.4 µm were successfully inscribed by SWaP, in which each individual pattern is smaller by a factor of 104 than that achievable by conventional photoalignment methods. This dye-free inscription of microscopic, complex alignment patterns over large areas provides a new pathway for designing higher-performance optical and mechanical devices.

16.
J Control Release ; 264: 288-305, 2017 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-28887136

RESUMO

During the last three decades, dendrimers, nano-sized highly-branched fractal-like symmetrical macromolecules, have been intensively studied as promising candidates for application as drug-delivery carriers. Among other important characteristics arising from their unique and highly-controlled architecture, size and surface properties, the possibility of hosting guest molecules in internal voids represents a key advantage underlying the potential of dendrimers as non-covalent drug-encapsulating agents. The impressive amount of accumulating experimental results to date allows researchers to identify the most important and promising theoretical and practical aspects of the use of dendrimers for this purpose. This review covers the main factors, phenomena, and mechanisms involved in this drug-vectorization approach, including mechanisms of non-covalent dendrimer-drug association, dendrimer-dendrimer interactions, as well as biological properties relevant to the host dendrimers. A discussion is then provided to illustrate some successful existing formulation strategies as well as to propose some new possible ones to optimize further development of the field.


Assuntos
Dendrímeros , Sistemas de Liberação de Medicamentos , Animais , Humanos
17.
Faraday Discuss ; 203: 441-457, 2017 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-28731094

RESUMO

We describe the use of dicyanoaurate ions as linear ditopic metal-organic acceptors for the halogen bond-driven assembly of a dichroic metal-organic cocrystal based on azobenzene chromophores. Structural analysis by single crystal X-ray diffraction revealed that the material is a four-component solid, consisting of anticipated anionic metal-organic halogen-bonded chains based on dicyanoaurate ions, as well as complex potassium-based cations and discrete molecules of the crown ether 15-crown-5. Importantly, the structural analysis revealed the parallel alignment of the halogen-bonded chains required for dichroic behaviour, confirming that crystal engineering principles developed for the design of halogen-bonded dichroic organic cocrystals are also applicable to metal-based structures. In the broader context of crystal engineering, the structure of the herein reported dichroic material is additionally interesting as the presence of an ion pair, a neutral azobenzene and a molecule of a room-temperature liquid make it an example of a solid that simultaneously conforms to definitions of a salt, a cocrystal, and a solvate.

18.
Soft Matter ; 13(16): 2903-2906, 2017 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-28368427

RESUMO

Azobenzene modification of Bombyx mori silkworm silk creates a photo-responsive 'azosilk' biomaterial, allowing for 3D laser patterning. Written regions fluoresce, and become fluid-filled raised 'micro-blisters' with a 10-fold photo-softening effect of the modulus. Patterning is facile and versatile, with potential applications as soft tunable materials for dynamic cell guidance and microfluidics.

19.
Macromol Rapid Commun ; 38(1)2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27879028

RESUMO

Humidity detection, and the quest for low-cost facile humidity-sensitive indicator materials is of great interest for many fields, including semi-conductor processing, food transport and storage, and pharmaceuticals. Ideal humidity-detection materials for a these applications might be based on simple clear optical readout with no power supply, i.e.: a clear color change observed by the naked eye of any untrained observer, since it doesn't require any extra instrumentation or interpretation. Here, the introduction of a synthesis-free one-step procedure, based on physical mixing of easily available commercial materials, for producing a humidity memory material which can be easily painted onto a wide variety of surfaces and undergoes a remarkable color change (approximately 100 nm blue-shift of λMAX ) upon exposure to various thresholds of levels of ambient humidity is reported. This strong color change, easily visible to as a red-to-orange color switch, is locked in until inspection, but can then be restored reversibly if desired, after moderate heating. By taking advantage of spontaneously-forming reversible 'soft' supramolecular bonds between a red-colored azo dye and a host polymer matrix, a reversible dye 'migration' aggregation appearing orange, and dis-aggregation back to red can be achieved, to function as the sensor.


Assuntos
Compostos Azo/química , Cor , Corantes/síntese química , Polímeros/química , Corantes/química , Umidade , Estrutura Molecular
20.
Biomater Sci ; 4(8): 1193-6, 2016 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-27165466

RESUMO

Coated beads retain great importance in the study of cell adhesion and intracellular communication; we present a generally applicable method permitting spatiotemporal control of bead adhesion from cells. Herein we demonstrate in vitro release of a poly-d-lysine (PDL) layer from anionic polystyrene beads, allowing complete bead release from rat cortical neurons post-adhesion.


Assuntos
Adesão Celular/efeitos da radiação , Luz , Poliestirenos/química , Animais , Lisina/química , Neurônios/química , Neurônios/metabolismo , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...