Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Inorg Chem ; 63(19): 8816-8821, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38696708

RESUMO

While intensive studies have focused on the synthesis and characterization of new metal-organic nanotube (MONT) structures, the lack of size and morphology control remains an obstacle in broadening applications for this class of materials. Herein, we demonstrate control of MONT crystallite size and morphology by tuning polarity and the protic/aprotic nature of solvents, including dimethylformamide, N-methyl-2-pyrrolidone, ethanol, and 2-methyltetrahydrofuran, for the isostructural syntheses of two MONTs. Through a combination of transmission electron microscopy, powder X-ray diffraction, and selected area electron diffraction, we find that MONT crystallite sizes can be tuned while maintaining control over the relative dispersity without significantly altering the underlying crystal structure.

2.
Blood ; 143(8): 721-733, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38048591

RESUMO

ABSTRACT: The volume of oxygen drawn from systemic capillaries down a partial pressure gradient is determined by the oxygen content of red blood cells (RBCs) and their oxygen-unloading kinetics, although the latter is assumed to be rapid and, therefore, not a meaningful factor. Under this paradigm, oxygen transfer to tissues is perfusion-limited. Consequently, clinical treatments to optimize oxygen delivery aim at improving blood flow and arterial oxygen content, rather than RBC oxygen handling. Although the oxygen-carrying capacity of blood is increased with transfusion, studies have shown that stored blood undergoes kinetic attrition of oxygen release, which may compromise overall oxygen delivery to tissues by causing transport to become diffusion-limited. We sought evidence for diffusion-limited oxygen release in viable human kidneys, normothermically perfused with stored blood. In a cohort of kidneys that went on to be transplanted, renal respiration correlated inversely with the time-constant of oxygen unloading from RBCs used for perfusion. Furthermore, the renal respiratory rate did not correlate with arterial O2 delivery unless this factored the rate of oxygen-release from RBCs, as expected from diffusion-limited transport. To test for a rescue effect, perfusion of kidneys deemed unsuitable for transplantation was alternated between stored and rejuvenated RBCs of the same donation. This experiment controlled oxygen-unloading, without intervening ischemia, holding all non-RBC parameters constant. Rejuvenated oxygen-unloading kinetics improved the kidney's oxygen diffusion capacity and increased cortical oxygen partial pressure by 60%. Thus, oxygen delivery to tissues can become diffusion-limited during perfusion with stored blood, which has implications in scenarios, such as ex vivo organ perfusion, major hemorrhage, and pediatric transfusion. This trial was registered at www.clinicaltrials.gov as #ISRCTN13292277.


Assuntos
Eritrócitos , Oxigênio , Humanos , Criança , Rim
4.
Chem Sci ; 14(4): 1003-1009, 2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36755710

RESUMO

Metal-organic nanotubes (MONTs) are 1-dimensional crystalline porous materials that are formed from ligands and metals in a manner identical to more typical 3-dimensional metal-organic frameworks (MOFs). MONTs form anisotropically in one dimension making them excellent candidates for linker engineering for control of chemical composition and spacing. A novel series of MONTs was synthesized utilizing a mixture of 1,2,4-ditriazole ligands containing both a fully protonated aryl moiety and its tetrafluorinated analog in ratios of, 0 : 1, 1 : 4, 1 : 1, 4 : 1, and 1 : 0, respectively. All MONTs were characterized by both bulk and nanoscale measurements, including SCXRD, PXRD, ssNMR and TEM, to determine the resulting co-polymer architecture (alternating, block, or statistical) and the ligand ratios in the solid materials. All characterization methods point towards statistical copolymerization of the materials in a manner analogous to 3D MOFs, all of which notably could be achieved without destructive analytical methods.

5.
Environ Toxicol Pharmacol ; 92: 103848, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35288337

RESUMO

Spironolactone, a potassium-sparing diuretic and aldosterone antagonist, is a mineralocorticoid hormone commonly prescribed to patients suffering from heart failure, hirsutism, dermatological afflictions, and hypertension. Interestingly, relatively little work has been done on the development of vertebrate embryos after exposure to this compound. Here, we treat zebrafish embryos with spironolactone at 10-6 M, 10-7 M, or 10-8 M, and observe them after three to seven days of exposure. While no effect was observed in mortality, we did detect differences in cardiovascular development at 3 dpf and craniofacial development at 5 dpf. At 10-6 M, smaller atria, ventricles, and blood vessels were observed. The highest concentrations also caused a longer ceratohyal/Meckel's distance, longer palatoquadrate, and smaller angles between the palatoquadrate and both the ceratohyal and Meckel's. Further research of spironolactone's effects on embryonic development could lead to a better understanding of the compound resulting in improved public and environmental health.


Assuntos
Espironolactona , Peixe-Zebra , Animais , Diuréticos , Desenvolvimento Embrionário , Espironolactona/farmacologia , Peixe-Zebra/embriologia
6.
R Soc Open Sci ; 8(11): 211022, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34804570

RESUMO

The dynamics of hydrogen peroxide reactions with metal carbonyls have received little attention. Given reports that therapeutic levels of carbon monoxide are released in hypoxic tumour cells upon manganese carbonyls reactions with endogenous H2O2, it is critical to assess the underlying CO release mechanism(s). In this context, a quantitative mechanistic investigation of the H2O2 oxidation of the water-soluble model complex fac-[Mn(CO)3(Br)(bpCO2)]2-, (A, bpCO2 2- = 2,2'-bipyridine-4,4'-dicarboxylate dianion) was undertaken under physiologically relevant conditions. Characterizing such pathways is essential to evaluating the viability of redox-mediated CO release as an anti-cancer strategy. The present experimental studies demonstrate that approximately 2.5 equivalents of CO are released upon H2O2 oxidation of A via pH-dependent kinetics that are first-order both in [A] and in [H2O2]. Density functional calculations were used to evaluate the key intermediates in the proposed reaction mechanisms. These pathways are discussed in terms of their relevance to physiological CO delivery by carbon monoxide releasing moieties.

7.
Inorg Chem ; 58(16): 11066-11075, 2019 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-31369245

RESUMO

Multiphoton excitation allows one to access high energy excited states and perform valuable tasks in biological systems using tissue penetrating near-infrared (NIR) light. Here, we describe new photoactive manganese tricarbonyl complexes incorporating the ligand 4'-p-N,N-bis(2-hydroxyethyl)amino-benzyl-2,2':6',2″-terpyridine (TPYOH), which can serve as an antenna for two photon NIR excitation. Solutions of Mn(CO)3(TPYOH)X (X = Br- or CF3SO3-) complexes are very photoactive toward CO release under visible light excitation (405 nm, 451 nm). The same responses were also triggered by multiphoton excitation at 750 and 800 nm. In this context, we discuss the potential applications of these complexes as visible/NIR light photoactivated carbon monoxide releasing moieties (photoCORMs). We also report the isolation and crystal structures of the TPYOH complexes Mn(TPYOH)Cl2 and [Mn(TPYOH)2](CF3SO3)2, to illustrate a possible photolysis product(s).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...