Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 257
Filtrar
1.
Contemp Clin Trials ; 142: 107559, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38714286

RESUMO

Platform trials are generally regarded as an innovative approach to address clinical valuation of early stage candidates, regardless of modality as the evidence evolves. As a type of randomized clinical trial (RCT) design construct in which multiple interventions are evaluated concurrently against a common control group allowing new interventions to be added and the control group to be updated throughout the trial, they provide a dynamic and efficient mechanism to compare and potentially discriminate new treatment candidates. Their recent use in the evaluation of new therapies for COVID-19 has spurred new interest in the approach. The paucity of platform trials is less influenced by the novelty and operational requirements as opposed to concerns regarding the sharing of intellectual property (IP) and the lack of infrastructure to operationalize the conduct in the context of IP and data sharing. We provide a mechanism how this can be accomplished through the use of a digital research environment (DRE) providing a safe and secure platform for clinical researchers, quantitative and physician scientists to analyze and develop tools (e.g., models) on sensitive data with the confidence that the data and models developed are protected. A DRE, in this context, expands on the concept of a trusted research environment (TRE) by providing remote access to data alongside tools for analysis in a securely controlled workspace, while allowing data and tools to be findable, accessible, interoperable, and reusable (FAIR), version-controlled, and dynamically grow in size or quality as a result of each treatment evaluated in the trial.


Assuntos
COVID-19 , Humanos , Disseminação de Informação/métodos , SARS-CoV-2 , Ensaios Clínicos Controlados Aleatórios como Assunto/métodos , Projetos de Pesquisa , Propriedade Intelectual
2.
Clin Transl Sci ; 17(4): e13785, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38572980

RESUMO

Real-world data (RWD) and real-world evidence (RWE) are now being routinely used in epidemiology, clinical practice, and post-approval regulatory decisions. Despite the increasing utility of the methodology and new regulatory guidelines in recent years, there remains a lack of awareness of how this approach can be applied in clinical pharmacology and translational research settings. Therefore, the American Society of Clinical Pharmacology & Therapeutics (ASCPT) held a workshop on March 21st, 2023 entitled "Advancing the Utilization of Real-World Data (RWD) and Real-World Evidence (RWE) in Clinical Pharmacology and Translational Research." The work described herein is a summary of the workshop proceedings.


Assuntos
Farmacologia Clínica , Humanos , Pesquisa Translacional Biomédica , Ciência Translacional Biomédica
4.
J Pharmacokinet Pharmacodyn ; 51(1): 5-31, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37573528

RESUMO

The current demand for pharmacometricians outmatches the supply provided by academic institutions and considerable investments are made to develop the competencies of these scientists on-the-job. Even with the observed increase in academic programs related to pharmacometrics, this need is unlikely to change in the foreseeable future, as the demand and scope of pharmacometrics applications keep expanding. Further, the field of pharmacometrics is changing. The field largely started when Lewis Sheiner and Stuart Beal published their seminal papers on population pharmacokinetics in the late 1970's and early 1980's and has continued to grow in impact and use since its inception. Physiological-based pharmacokinetics and systems pharmacology have grown rapidly in scope and impact in the last decade and machine learning is just on the horizon. While all these methodologies are categorized as pharmacometrics, no one person can be an expert in everything. So how do you train future pharmacometricians? Leading experts in academia, industry, contract research organizations, clinical medicine, and regulatory gave their opinions on how to best train future pharmacometricians. Their opinions were collected and synthesized to create some general recommendations.


Assuntos
Farmacologia , Humanos , Farmacocinética , Escolha da Profissão
6.
AAPS J ; 25(4): 70, 2023 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-37430126

RESUMO

Model-informed drug development involves developing and applying exposure-based, biological, and statistical models derived from preclinical and clinical data sources to inform drug development and decision-making. Discrete models are generated from individual experiments resulting in a single model expression that is utilized to inform a single stage-gate decision. Other model types provide a more holistic view of disease biology and potentially disease progression depending on the appropriateness of the underlying data sources for that purpose. Despite this awareness, most data integration and model development approaches are still reliant on internal (within company) data stores and traditional structural model types. An AI/ML-based MIDD approach relies on more diverse data and is informed by past successes and failures including data outside a host company (external data sources) that may enhance predictive value and enhance data generated by the sponsor to reflect more informed and timely experimentation. The AI/ML methodology also provides a complementary approach to more traditional modeling efforts that support MIDD and thus yields greater fidelity in decision-making. Early pilot studies support this assessment but will require broader adoption and regulatory support for more evidence and refinement of this paradigm. An AI/ML-based approach to MIDD has the potential to transform regulatory science and the current drug development paradigm, optimize information value, and increase candidate and eventually product confidence with respect to safety and efficacy. We highlight early experiences with this approach using the AI compute platforms as representative examples of how MIDD can be facilitated with an AI/ML approach.


Assuntos
Desenvolvimento de Medicamentos , Modelos Estatísticos , Humanos , Progressão da Doença , Projetos de Pesquisa
7.
J Clin Pharmacol ; 63 Suppl 1: S51-S61, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37317497

RESUMO

Despite the increasing awareness and guidance to support drug research and development in the pregnant population, there is still a high unmet medical need and off-label use in the pregnant population for mainstream, acute, chronic, rare disease, and vaccination/prophylactic use. There are many obstacles to enrolling the pregnant population in a study, ranging from ethical considerations, the complexity of the pregnancy stages, postpartum, fetus-mother interaction, and drug transfer to breast milk during lactation and impacts on neonates. This review will outline the common challenges of incorporating physiological differences in the pregnant population and historical but noninformative practice in a past clinical trial in pregnant women that led to labeling difficulties. The recommendations of different modeling approaches, such as a population pharmacokinetic model, physiologically based pharmacokinetic modeling, model-based meta-analysis, and quantitative system pharmacology modeling, are presented with some examples. Finally, we outline the gaps in the medical need for the pregnant population by classifying various types of diseases and some considerations that exist to support the use of medicines in this area. Ideas on the potential framework to support clinical trials and collaboration examples are also presented that could also accelerate understanding of drug research and medicine/prophylactics/vaccines in the pregnant population.


Assuntos
Aleitamento Materno , Lactação , Feminino , Humanos , Recém-Nascido , Gravidez , Simulação por Computador , Leite Humano , Estudos Prospectivos
8.
J Clin Pharmacol ; 63 Suppl 1: S96-S105, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37317502

RESUMO

Pregnant women are still viewed as therapeutic orphans to the extent that they are avoided as participants in mainstream clinical trials and not considered a priority for targeted drug research despite the fact that many clinical conditions exist during pregnancy for which pharmacotherapy is warranted. Part of the challenge is the uncertain risk potential that pregnant women represent in the absence of timely and costly toxicology and developmental pharmacology studies, which only partly mitigate such risks. Even when clinical trials are conducted in pregnant women, they are often underpowered and absent biomarkers and exclude evaluation across multiple stages of pregnancy where relevant development risk could have been assessed. Quantitative systems pharmacology model development has been proposed as one solution to fill knowledge gaps, make earlier and perhaps more informed risk assessment, and design more informative trials with better recommendations for biomarker and end point selection including design and sample size optimality. Funding for translational research in pregnancy is limited but will fill some of these gaps, especially when joined with ongoing clinical trials in pregnancy that also fill certain knowledge gaps, especially biomarker and end point evaluation across pregnancy states linked to clinical outcomes. Opportunities exist for further advances in quantitative systems pharmacology model development with the inclusion of real-world data sources and complimentary artificial intelligence/machine learning approaches. The successful coordination of the approach reliant on these new data sources will require commitments to share data and a diverse multidisciplinary group that seeks to develop open science models that benefit the entire research community, ensuring that such models can be used with high fidelity. New data opportunities and computational resources are highlighted in an effort to project how these efforts can move forward.


Assuntos
Farmacologia em Rede , Biologia de Sistemas , Gravidez , Feminino , Humanos , Inteligência Artificial , Desenvolvimento de Medicamentos , Medição de Risco
9.
J Pharmacokinet Pharmacodyn ; 50(6): 507-519, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37131052

RESUMO

Rare disease drug development is wrought with challenges not the least of which is access to the limited data currently available throughout the rare disease ecosystem where sharing of the available data is not guaranteed. Most pharmaceutical sponsors seeking to develop agents to treat rare diseases will initiate data landscaping efforts to identify various data sources that might be informative with respect to disease prevalence, patient selection and identification, disease progression and any data projecting likelihood of patient response to therapy including any genetic data. Such data are often difficult to come by for highly prevalent, mainstream disease populations let alone for the 8000 rare disease that make up the pooled patient population of rare disease patients. The future of rare disease drug development will hopefully rely on increased data sharing and collaboration among the entire rare disease ecosystem. One path to achieving this outcome has been the development of the rare disease cures accelerator, data analytics platform (RDCA-DAP) funded by the US FDA and operationalized by the Critical Path Institute. FDA intentions were clearly focused on improving the quality of rare disease regulatory applications by sponsors seeking to develop treatment options for various rare disease populations. As this initiative moves into its second year of operations it is envisioned that the increased connectivity to new and diverse data streams and tools will result in solutions that benefit the entire rare disease ecosystem and that the platform becomes a Collaboratory for engagement of this ecosystem that also includes patients and caregivers.


Assuntos
Doenças Raras , Humanos , Ciência de Dados , Progressão da Doença , Doenças Raras/tratamento farmacológico
10.
Front Pharmacol ; 14: 1115356, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37033647

RESUMO

Early-stage drug discovery is highly dependent upon drug target evaluation, understanding of disease progression and identification of patient characteristics linked to disease progression overlaid upon chemical libraries of potential drug candidates. Artificial intelligence (AI) has become a credible approach towards dealing with the diversity and volume of data in the modern drug development phase. There are a growing number of services and solutions available to pharmaceutical sponsors though most prefer to constrain their own data to closed solutions given the intellectual property considerations. Newer platforms offer an alternative, outsourced solution leveraging sponsors data with other, external open-source data to anchor predictions (often proprietary algorithms) which are refined given data indexed upon the sponsor's own chemical libraries. Digital research environments (DREs) provide a mechanism to ingest, curate, integrate and otherwise manage the diverse data types relevant for drug discovery activities and also provide workspace services from which target sharing and collaboration can occur providing yet another alternative with sponsors being in control of the platform, data and predictive algorithms. Regulatory engagement will be essential in the operationalizing of the various solutions and alternatives; current treatment of drug discovery data may not be adequate with respect to both quality and useability in the future. More sophisticated AI/ML algorithms are likely based on current performance metrics and diverse data types (e.g., imaging and genomic data) will certainly be a more consistent part of the myriad of data types that fuel future AI-based algorithms. This favors a dynamic DRE-enabled environment to support drug discovery.

11.
Nat Commun ; 14(1): 604, 2023 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-36737450

RESUMO

Blood lipids and metabolites are markers of current health and future disease risk. Here, we describe plasma nuclear magnetic resonance (NMR) biomarker data for 118,461 participants in the UK Biobank. The biomarkers cover 249 measures of lipoprotein lipids, fatty acids, and small molecules such as amino acids, ketones, and glycolysis metabolites. We provide an atlas of associations of these biomarkers to prevalence, incidence, and mortality of over 700 common diseases ( nightingalehealth.com/atlas ). The results reveal a plethora of biomarker associations, including susceptibility to infectious diseases and risk of various cancers, joint disorders, and mental health outcomes, indicating that abundant circulating lipids and metabolites are risk markers beyond cardiometabolic diseases. Clustering analyses indicate similar biomarker association patterns across different disease types, suggesting latent systemic connectivity in the susceptibility to a diverse set of diseases. This work highlights the value of NMR based metabolic biomarker profiling in large biobanks for public health research and translation.


Assuntos
Bancos de Espécimes Biológicos , Lipídeos , Humanos , Biomarcadores , Espectroscopia de Ressonância Magnética/métodos , Reino Unido/epidemiologia
12.
J Clin Pharmacol ; 62 Suppl 2: S38-S55, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36461748

RESUMO

Rare diseases represent a highly heterogeneous group of disorders with high phenotypic and genotypic diversity within individual conditions. Due to the small numbers of people affected, there are unique challenges in understanding rare diseases and drug development for these conditions, including patient identification and recruitment, trial design, and costs. Natural history data and real-world data (RWD) play significant roles in defining and characterizing disease progression, final patient populations, novel biomarkers, genetic relationships, and treatment effects. This review provides an introduction to rare diseases, natural history data, RWD, and real-world evidence, the respective sources and applications of these data in several rare diseases. Considerations for data quality and limitations when using natural history and RWD are also elaborated. Opportunities are highlighted for cross-sector collaboration, standardized and high-quality data collection using new technologies, and more comprehensive evidence generation using quantitative approaches such as disease progression modeling, artificial intelligence, and machine learning. Advanced statistical approaches to integrate natural history data and RWD to further disease understanding and guide more efficient clinical study design and data analysis in drug development in rare diseases are also discussed.


Assuntos
Inteligência Artificial , Doenças Raras , Humanos , Doenças Raras/tratamento farmacológico , Doenças Raras/genética , Desenvolvimento de Medicamentos , Projetos de Pesquisa , Progressão da Doença
13.
Virus Evol ; 8(2): veac080, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36533153

RESUMO

The first SARS-CoV-2 variant of concern (VOC) to be designated was lineage B.1.1.7, later labelled by the World Health Organization as Alpha. Originating in early autumn but discovered in December 2020, it spread rapidly and caused large waves of infections worldwide. The Alpha variant is notable for being defined by a long ancestral phylogenetic branch with an increased evolutionary rate, along which only two sequences have been sampled. Alpha genomes comprise a well-supported monophyletic clade within which the evolutionary rate is typical of SARS-CoV-2. The Alpha epidemic continued to grow despite the continued restrictions on social mixing across the UK and the imposition of new restrictions, in particular, the English national lockdown in November 2020. While these interventions succeeded in reducing the absolute number of cases, the impact of these non-pharmaceutical interventions was predominantly to drive the decline of the SARS-CoV-2 lineages that preceded Alpha. We investigate the only two sampled sequences that fall on the branch ancestral to Alpha. We find that one is likely to be a true intermediate sequence, providing information about the order of mutational events that led to Alpha. We explore alternate hypotheses that can explain how Alpha acquired a large number of mutations yet remained largely unobserved in a region of high genomic surveillance: an under-sampled geographical location, a non-human animal population, or a chronically infected individual. We conclude that the latter provides the best explanation of the observed behaviour and dynamics of the variant, although the individual need not be immunocompromised, as persistently infected immunocompetent hosts also display a higher within-host rate of evolution. Finally, we compare the ancestral branches and mutation profiles of other VOCs and find that Delta appears to be an outlier both in terms of the genomic locations of its defining mutations and a lack of the rapid evolutionary rate on its ancestral branch. As new variants, such as Omicron, continue to evolve (potentially through similar mechanisms), it remains important to investigate the origins of other variants to identify ways to potentially disrupt their evolution and emergence.

14.
Front Pharmacol ; 13: 988974, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36313352

RESUMO

The 21st Century Cures Act requires FDA to expand its use of real-world evidence (RWE) to support approval of previously approved drugs for new disease indications and post-marketing study requirements. To address this need in neonates, the FDA and the Critical Path Institute (C-Path) established the International Neonatal Consortium (INC) to advance regulatory science and expedite neonatal drug development. FDA recently provided funding for INC to generate RWE to support regulatory decision making in neonatal drug development. One study is focused on developing a validated definition of bronchopulmonary dysplasia (BPD) in neonates. BPD is difficult to diagnose with diverse disease trajectories and few viable treatment options. Despite intense research efforts, limited understanding of the underlying disease pathobiology and disease projection continues in the context of a computable phenotype. It will be important to determine if: 1) a large, multisource aggregation of real-world data (RWD) will allow identification of validated risk factors and surrogate endpoints for BPD, and 2) the inclusion of these simulations will identify risk factors and surrogate endpoints for studies to prevent or treat BPD and its related long-term complications. The overall goal is to develop qualified, fit-for-purpose disease progression models which facilitate credible trial simulations while quantitatively capturing mechanistic relationships relevant for disease progression and the development of future treatments. The extent to which neonatal RWD can inform these models is unknown and its appropriateness cannot be guaranteed. A component of this approach is the critical evaluation of the various RWD sources for context-of use (COU)-driven models. The present manuscript defines a landscape of the data including targeted literature searches and solicitation of neonatal RWD sources from international stakeholders; analysis plans to develop a family of models of BPD in neonates, leveraging previous clinical trial experience and real-world patient data is also described.

15.
16.
Nat Genet ; 54(9): 1275-1283, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36038634

RESUMO

Genome-wide association studies (GWASs) have identified hundreds of loci associated with Crohn's disease (CD). However, as with all complex diseases, robust identification of the genes dysregulated by noncoding variants typically driving GWAS discoveries has been challenging. Here, to complement GWASs and better define actionable biological targets, we analyzed sequence data from more than 30,000 patients with CD and 80,000 population controls. We directly implicate ten genes in general onset CD for the first time to our knowledge via association to coding variation, four of which lie within established CD GWAS loci. In nine instances, a single coding variant is significantly associated, and in the tenth, ATG4C, we see additionally a significantly increased burden of very rare coding variants in CD cases. In addition to reiterating the central role of innate and adaptive immune cells as well as autophagy in CD pathogenesis, these newly associated genes highlight the emerging role of mesenchymal cells in the development and maintenance of intestinal inflammation.


Assuntos
Doença de Crohn , Doença de Crohn/genética , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Humanos , Polimorfismo de Nucleotídeo Único/genética
17.
Nature ; 610(7930): 154-160, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35952712

RESUMO

The SARS-CoV-2 Delta (Pango lineage B.1.617.2) variant of concern spread globally, causing resurgences of COVID-19 worldwide1,2. The emergence of the Delta variant in the UK occurred on the background of a heterogeneous landscape of immunity and relaxation of non-pharmaceutical interventions. Here we analyse 52,992 SARS-CoV-2 genomes from England together with 93,649 genomes from the rest of the world to reconstruct the emergence of Delta and quantify its introduction to and regional dissemination across England in the context of changing travel and social restrictions. Using analysis of human movement, contact tracing and virus genomic data, we find that the geographic focus of the expansion of Delta shifted from India to a more global pattern in early May 2021. In England, Delta lineages were introduced more than 1,000 times and spread nationally as non-pharmaceutical interventions were relaxed. We find that hotel quarantine for travellers reduced onward transmission from importations; however, the transmission chains that later dominated the Delta wave in England were seeded before travel restrictions were introduced. Increasing inter-regional travel within England drove the nationwide dissemination of Delta, with some cities receiving more than 2,000 observable lineage introductions from elsewhere. Subsequently, increased levels of local population mixing-and not the number of importations-were associated with the faster relative spread of Delta. The invasion dynamics of Delta depended on spatial heterogeneity in contact patterns, and our findings will inform optimal spatial interventions to reduce the transmission of current and future variants of concern, such as Omicron (Pango lineage B.1.1.529).


Assuntos
COVID-19 , SARS-CoV-2 , COVID-19/epidemiologia , COVID-19/prevenção & controle , COVID-19/transmissão , COVID-19/virologia , Cidades/epidemiologia , Busca de Comunicante , Inglaterra/epidemiologia , Genoma Viral/genética , Humanos , Quarentena/legislação & jurisprudência , SARS-CoV-2/genética , SARS-CoV-2/crescimento & desenvolvimento , SARS-CoV-2/isolamento & purificação , Viagem/legislação & jurisprudência
18.
Ther Innov Regul Sci ; 56(5): 768-776, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35668316

RESUMO

Rare diseases impact the lives of an estimated 350 million people worldwide, and yet about 90% of rare diseases remain without an approved treatment. New technologies have become available, such as gene and oligonucleotide therapies, that offer great promise in treating rare diseases. However, progress toward the development of therapies to treat these diseases is hampered by a limited understanding of the course of each rare disease, how changes in disease progression occur and can be effectively measured over time, and challenges in designing and running clinical trials in diseases where the natural history is poorly characterized. Data that could be used to characterize the natural history of each disease has often been collected in various ways, including in electronic health records, patient-report registries, clinical natural history studies, and in past clinical trials. However, each data source contains a limited number of subjects and different data elements, and data is frequently kept proprietary in the hands of the study sponsor rather than shared widely across the rare disease community. The Rare Disease Cures Accelerator-Data and Analytics Platform (RDCA-DAP) is an FDA-funded effort to overcome these persistent challenges. By aggregating data across all rare diseases and making that data available to the community to support understanding of rare disease natural history and inform drug development, RDCA-DAP aims to accelerate the regulatory approval of new therapies. RDCA-DAP curates, standardizes, and tags data across rare disease datasets to make it findable within the database, and contains a built-in analytics platform to help visualize, interpret, and use it to support drug development. RDCA-DAP will coordinate data and tool resources across non-profit, commercial, and for-profit entities to serve a diverse array of rare disease stakeholders that includes academic researchers, drug developers, FDA reviewers and of course patients and their caregivers. Drug development programs utilizing the RDCA-DAP will be able to leverage existing data to support their efforts and reach definitive decisions on the efficacy of their therapeutics more efficiently and more rapidly than ever.


Assuntos
Desenvolvimento de Medicamentos , Doenças Raras , Bases de Dados Factuais , Humanos , Doenças Raras/tratamento farmacológico , Sistema de Registros
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...