Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
1.
Cell Rep ; 43(7): 114247, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38907996

RESUMO

Human induced pluripotent stem cell (hiPSC)-derived intestinal organoids are valuable tools for researching developmental biology and personalized therapies, but their closed topology and relative immature state limit applications. Here, we use organ-on-chip technology to develop a hiPSC-derived intestinal barrier with apical and basolateral access in a more physiological in vitro microenvironment. To replicate growth factor gradients along the crypt-villus axis, we locally expose the cells to expansion and differentiation media. In these conditions, intestinal epithelial cells self-organize into villus-like folds with physiological barrier integrity, and myofibroblasts and neurons emerge and form a subepithelial tissue in the bottom channel. The growth factor gradients efficiently balance dividing and mature cell types and induce an intestinal epithelial composition, including absorptive and secretory lineages, resembling the composition of the human small intestine. This well-characterized hiPSC-derived intestine-on-chip system can facilitate personalized studies on physiological processes and therapy development in the human small intestine.

2.
Aging Cell ; : e14193, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38724466

RESUMO

DNA damage-induced senescence is initially sustained by p53. Senescent cells produce a senescence-associated secretory phenotype (SASP) that impacts the aging microenvironment, often promoting cell transformation. Employing normal non-tumorous human colon cells (hNCC) derived from surgical biopsies and three-dimensional human intestinal organoids, we show that local non-pituitary growth hormone (npGH) induced in senescent cells is a SASP component acting to suppress p53. npGH autocrine/paracrine suppression of p53 results in senescence evasion and cell-cycle reentry, as evidenced by increased Ki67 and BrdU incorporation. Post-senescent cells exhibit activated epithelial-to-mesenchymal transition (EMT), and increased cell motility. Nu/J mice harboring GH-secreting HCT116 xenografts with resultant high GH levels and injected intrasplenic with post-senescent hNCC developed fourfold more metastases than did mice harboring control xenografts, suggesting that paracrine npGH enables post-senescent cell transformation. By contrast, senescent cells with suppressed npGH exhibit downregulated Ki67 and decreased soft agar colony formation. Mechanisms underlying these observations include npGH induction by the SASP chemokine CXCL1, which attracts immune effectors to eliminate senescent cells; GH, in turn, suppresses CXCL1, likely by inhibiting phospho-NFκB, resulting in SASP cytokine downregulation. Consistent with these findings, GH-receptor knockout mice exhibited increased colon phospho-NFκB and CXCL1, while GH excess decreased colon CXCL1. The results elucidate mechanisms for local hormonal regulation of microenvironmental changes in DNA-damaged non-tumorous epithelial cells and portray a heretofore unappreciated GH action favoring age-associated epithelial cell transformation.

3.
Lab Chip ; 24(4): 869-881, 2024 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-38252454

RESUMO

Cardiovascular toxicity causes adverse drug reactions and may lead to drug removal from the pharmaceutical market. Cancer therapies can induce life-threatening cardiovascular side effects such as arrhythmias, muscle cell death, or vascular dysfunction. New technologies have enabled cardiotoxic compounds to be identified earlier in drug development. Human induced pluripotent stem cell (hiPSC)-derived cardiomyocytes (CMs) and vascular endothelial cells (ECs) can screen for drug-induced alterations in cardiovascular cell function and survival. However, most existing hiPSC models for cardiovascular drug toxicity utilize two-dimensional, immature cells grown in static culture. Improved in vitro models to mechanistically interrogate cardiotoxicity would utilize more adult-like, mature hiPSC-derived cells in an integrated system whereby toxic drugs and protective agents can flow between hiPSC-ECs that represent systemic vasculature and hiPSC-CMs that represent heart muscle (myocardium). Such models would be useful for testing the multi-lineage cardiotoxicities of chemotherapeutic drugs such as VEGFR2/PDGFR-inhibiting tyrosine kinase inhibitors (VPTKIs). Here, we develop a multi-lineage, fully-integrated, cardiovascular organ-chip that can enhance hiPSC-EC and hiPSC-CM functional and genetic maturity, model endothelial barrier permeability, and demonstrate long-term functional stability. This microfluidic organ-chip harbors hiPSC-CMs and hiPSC-ECs on separate channels that can be subjected to active fluid flow and rhythmic biomechanical stretch. We demonstrate the utility of this cardiovascular organ-chip as a predictive platform for evaluating multi-lineage VPTKI toxicity. This study may lead to the development of new modalities for the evaluation and prevention of cancer therapy-induced cardiotoxicity.


Assuntos
Células-Tronco Pluripotentes Induzidas , Neoplasias , Humanos , Cardiotoxicidade/etiologia , Cardiotoxicidade/metabolismo , Células Endoteliais , Miócitos Cardíacos , Neoplasias/metabolismo
4.
Can J Surg ; 66(6): E522-E534, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37914210

RESUMO

People suffering from critical injuries/illness face marked challenges before transportation to definitive care. Solutions to diagnose and intervene in the prehospital setting are required to improve outcomes. Despite advances in artificial intelligence and robotics, near-term practical interventions for catastrophic injuries/illness will require humans to perform unfamiliar, uncomfortable and risky interventions. Development of posttraumatic stress disorder is already disproportionately high among first responders and correlates with uncertainty and doubts concerning decisions, actions and inactions. Technologies such as remote telementoring (RTM) may enable such interventions and will hopefully decrease potential stress for first responders. How thought processes may be remotely assisted using RTM and other technologies should be studied urgently. We need to understand if the use of cognitively offloading technologies such as RTM will alleviate, or at least not exacerbate, the psychological stresses currently disabling first responders.


Assuntos
Inteligência Artificial , Serviços Médicos de Emergência , Humanos , Cognição
5.
iScience ; 26(11): 108117, 2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-37876819

RESUMO

DNA damage repair (DDR) is mediated by phosphorylating effectors ATM kinase, CHK2, p53, and γH2AX. We showed earlier that GH suppresses DDR by suppressing pATM, resulting in DNA damage accumulation. Here, we show GH acting through GH receptor (GHR) inducing wild-type p53-inducible phosphatase 1 (WIP1), which dephosphorylated ATM and its effectors in normal human colon cells and three-dimensional human intestinal organoids. Mice bearing GH-secreting xenografts exhibited induced colon WIP1 with suppressed pATM and γH2AX. WIP1 was also induced in buffy coats derived from patients with elevated GH from somatotroph adenomas. In contrast, decreased colon WIP1 was observed in GHR-/- mice. WIP1 inhibition restored ATM phosphorylation and reversed GH-induced DNA damage. We elucidated a novel GH signaling pathway activating Src/AMPK to trigger HIPK2 nuclear-cytoplasmic relocation and suppressing WIP1 ubiquitination. Concordantly, blocking either AMPK or Src abolished GH-induced WIP1. We identify WIP1 as a specific target for GH-mediated epithelial DNA damage accumulation.

6.
Ecol Evol ; 13(7): e10312, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37456077

RESUMO

Demographic correlations are pervasive in wildlife populations and can represent important secondary drivers of population growth. Empirical evidence suggests that correlations are in general positive for long-lived species, but little is known about the degree of variation among spatially segregated populations of the same species in relation to environmental conditions. We assessed the relative importance of two cross-season correlations in survival and productivity, for three Atlantic puffin (Fratercula arctica) populations with contrasting population trajectories and non-overlapping year-round distributions. The two correlations reflected either a relationship between adult survival prior to breeding on productivity, or a relationship between productivity and adult survival the subsequent year. Demographic rates and their correlations were estimated with an integrated population model, and their respective contributions to variation in population growth were calculated using a transient-life table response experiment. For all three populations, demographic correlations were positive at both time lags, although their strength differed. Given the different year-round distributions of these populations, this variation in the strength population-level demographic correlations points to environmental conditions as an important driver of demographic variation through life-history constraints. Consequently, the contributions of variances and correlations in demographic rates to population growth rates differed among puffin populations, which has implications for-particularly small-populations' viability under environmental change as positive correlations tend to reduce the stochastic population growth rate.

7.
Proc Natl Acad Sci U S A ; 120(19): e2208389120, 2023 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-37126701

RESUMO

Climate change affects timing of reproduction in many bird species, but few studies have investigated its influence on annual reproductive output. Here, we assess changes in the annual production of young by female breeders in 201 populations of 104 bird species (N = 745,962 clutches) covering all continents between 1970 and 2019. Overall, average offspring production has declined in recent decades, but considerable differences were found among species and populations. A total of 56.7% of populations showed a declining trend in offspring production (significant in 17.4%), whereas 43.3% exhibited an increase (significant in 10.4%). The results show that climatic changes affect offspring production through compounded effects on ecological and life history traits of species. Migratory and larger-bodied species experienced reduced offspring production with increasing temperatures during the chick-rearing period, whereas smaller-bodied, sedentary species tended to produce more offspring. Likewise, multi-brooded species showed increased breeding success with increasing temperatures, whereas rising temperatures were unrelated to reproductive success in single-brooded species. Our study suggests that rapid declines in size of bird populations reported by many studies from different parts of the world are driven only to a small degree by changes in the production of young.


Assuntos
Mudança Climática , Características de História de Vida , Animais , Feminino , Estações do Ano , Galinhas , Reprodução
8.
Nutrients ; 14(16)2022 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-36014757

RESUMO

COVID-19 and a low vitamin D state share common risk factors, which might explain why vitamin D deficiency has been linked with higher COVID-19 mortality. Moreover, measures of serum vitamin D may become lower during systemic inflammatory responses, further confounding the association via reverse causality. In this prospective study (recruited over 12 months), we examined whether the association between a low vitamin D state and in-hospital mortality due to SARS-CoV-2 pneumonia in unvaccinated subjects is explained by (i) the presence of shared risk factors (e.g., obesity, advanced age) or (ii) a reduction in serum 25(OH)D due to COVID-19 (i.e., reverse causality). In this cohort of 232 (mean age = 56 years) patients (all had SARS-CoV-2 diagnosed via PCR AND required supplemental oxygen therapy), we failed to find an association between serum vitamin D and levels of CRP, or other inflammatory markers. However, the hazard ratio for mortality for subjects over 70 years of age (13.2) and for subjects with a serum 25(OH)D level less than 30 nmol·L−1 (4.6) remained significantly elevated even after adjustment for gender, obesity and the presence of diabetes mellitus. Subjects <70 years and >70 years had significantly higher mortality with a serum 25(OH)D less than 30 nmol·L−1 (11.8% and 55%), than with a serum 25(OH)D greater than 30 nmol·L−1 (2.2% and 25%). Unvaccinated Caucasian adults with a low vitamin D state have higher mortality due to SARS CoV-2 pneumonia, which is not explained by confounders and is not closely linked with elevated serum CRP.


Assuntos
COVID-19 , Deficiência de Vitamina D , Adulto , Idoso , Idoso de 80 Anos ou mais , Humanos , Pessoa de Meia-Idade , Obesidade , Estudos Prospectivos , SARS-CoV-2 , Vitamina D , Vitaminas
9.
J Anim Ecol ; 91(9): 1797-1812, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35675093

RESUMO

Timing of breeding, an important driver of fitness in many populations, is widely studied in the context of global change, yet despite considerable efforts to identify environmental drivers of seabird nesting phenology, for most populations we lack evidence of strong drivers. Here we adopt an alternative approach, examining the degree to which different populations positively covary in their annual phenology to infer whether phenological responses to environmental drivers are likely to be (a) shared across species at a range of spatial scales, (b) shared across populations of a species or (c) idiosyncratic to populations. We combined 51 long-term datasets on breeding phenology spanning 50 years from nine seabird species across 29 North Atlantic sites and examined the extent to which different populations share early versus late breeding seasons depending on a hierarchy of spatial scales comprising breeding site, small-scale region, large-scale region and the whole North Atlantic. In about a third of cases, we found laying dates of populations of different species sharing the same breeding site or small-scale breeding region were positively correlated, which is consistent with the hypothesis that they share phenological responses to the same environmental conditions. In comparison, we found no evidence for positive phenological covariation among populations across species aggregated at larger spatial scales. In general, we found little evidence for positive phenological covariation between populations of a single species, and in many instances the inter-year variation specific to a population was substantial, consistent with each population responding idiosyncratically to local environmental conditions. Black-legged kittiwake Rissa tridactyla was the exception, with populations exhibiting positive covariation in laying dates that decayed with the distance between breeding sites, suggesting that populations may be responding to a similar driver. Our approach sheds light on the potential factors that may drive phenology in our study species, thus furthering our understanding of the scales at which different seabirds interact with interannual variation in their environment. We also identify additional systems and phenological questions to which our inferential approach could be applied.


Assuntos
Charadriiformes , Animais , Mudança Climática , Estações do Ano
10.
Inflamm Bowel Dis ; 28(5): 667-679, 2022 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-34918082

RESUMO

BACKGROUND: Intestinal fibrosis is a serious complication of Crohn's disease. Numerous cell types including intestinal epithelial and mesenchymal cells are implicated in this process, yet studies are hampered by the lack of personalized in vitro models. Human intestinal organoids (HIOs) derived from induced pluripotent stem cells (iPSCs) contain these cell types, and our goal was to determine the feasibility of utilizing these to develop a personalized intestinal fibrosis model. METHODS: iPSCs from 2 control individuals and 2 very early onset inflammatory bowel disease patients with stricturing complications were obtained and directed to form HIOs. Purified populations of epithelial and mesenchymal cells were derived from HIOs, and both types were treated with the profibrogenic cytokine transforming growth factor ß (TGFß). Quantitative polymerase chain reaction and RNA sequencing analysis were used to assay their responses. RESULTS: In iPSC-derived mesenchymal cells, there was a significant increase in the expression of profibrotic genes (Col1a1, Col5a1, and TIMP1) in response to TGFß. RNA sequencing analysis identified further profibrotic genes and demonstrated differential responses to this cytokine in each of the 4 lines. Increases in profibrotic gene expression (Col1a1, FN, TIMP1) along with genes associated with epithelial-mesenchymal transition (vimentin and N-cadherin) were observed in TGFß -treated epithelial cells. CONCLUSIONS: We demonstrate the feasibility of utilizing iPSC-HIO technology to model intestinal fibrotic responses in vitro. This now permits the generation of near unlimited quantities of patient-specific cells that could be used to reveal cell- and environmental-specific mechanisms underpinning intestinal fibrosis.


Intestinal fibrosis is a serious complication of Crohn's disease and novel in vitro models are urgently needed to study this. We describe an induced pluripotent stem cell­derived modeling system whereby a near unlimited number of both epithelial and mesenchymal cells could be used in a personalized intestinal fibrosis model.


Assuntos
Células-Tronco Pluripotentes Induzidas , Organoides , Fibrose , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Intestinos , Organoides/metabolismo , Fator de Crescimento Transformador beta/metabolismo
11.
Cell Rep ; 37(11): 110068, 2021 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-34910915

RESUMO

Microenvironmental factors modulating age-related DNA damage are unclear. Non-pituitary growth hormone (npGH) is induced in human colon, non-transformed human colon cells, and fibroblasts, and in 3-dimensional intestinal organoids with age-associated DNA damage. Autocrine/paracrine npGH suppresses p53 and attenuates DNA damage response (DDR) by inducing TRIM29 and reducing ATM phosphorylation, leading to reduced DNA repair and DNA damage accumulation. Organoids cultured up to 4 months exhibit aging markers, p16, and SA-ß-galactosidase and decreased telomere length, as well as DNA damage accumulation, with increased npGH, suppressed p53, and attenuated DDR. Suppressing GH in aged organoids increases p53 and decreases DNA damage. WT mice exhibit age-dependent colon DNA damage accumulation, while in aged mice devoid of colon GH signaling, DNA damage remains low, with elevated p53. As age-associated npGH induction enables a pro-proliferative microenvironment, abrogating npGH signaling could be targeted as anti-aging therapy by impeding DNA damage and age-related pathologies.


Assuntos
Envelhecimento , Proteínas de Transporte/fisiologia , Colo/patologia , Dano ao DNA , Fibroblastos/patologia , Hormônio do Crescimento Humano/metabolismo , Mucosa Intestinal/patologia , Animais , Colo/metabolismo , Reparo do DNA , Fibroblastos/metabolismo , Humanos , Mucosa Intestinal/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Transdução de Sinais
12.
Expert Rev Respir Med ; 15(12): 1605-1612, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34555287

RESUMO

BACKGROUND: During the pandemic, there have been disruptions to how patients seek care. RESEARCH DESIGN AND METHODS: To investigate monthly prescription claims for asthma and chronic obstructive pulmonary disease (COPD) medicines during the first UK wave, interrupted time series (ITS) analysis was used. A national cohort of community patients' data were examined. RESULTS: Descriptive statistics show salbutamol, aminophylline, ipratropium, and theophylline remain below pre-pandemic levels.Montelukast showed pre-pandemic monthly increase (Est. 67,151 doses, P = 0.05, 95% CI: 1011, 133,291), followed by a jump of 1.6 million doses at March , followed by monthly declines (Est. -112,098 doses, P = 0.216, 95% CI: -293,499, 69,303).Before the pandemic, tiotropium, salbutamol, aminophylline, and ipratropium (P = 0.003) show monthly declines but theophylline and beclometasone showed increases. In March , salbutamol (P = 0.033) and ipratropium (P = 0.001) show a significant jump. After March , ipratropium continues with a downward trajectory (P = 0.001), with a generalized negative trend for all other agents. Salbutamol confidence bounds become negative after March 2020. Some brands were unavailable. CONCLUSIONS: An 'unmet' medical gap is identified. While it is essential to understand the underlying reasons, urgent action needs to be taken to reassess patients and ensure continuity of care.PLAIN LANGUAGE SUMMARIES (PLS)Asthma and chronic obstructive pulmonary disease (COPD) are long-term lung conditions, affecting 6 million & 1.2 million people respectively and causing breathing difficulties. Sufferers are at a higher risk of chest infections including the coronavirus. Regular use of prescribed medication stabilizes these conditions and prevents them from getting worse. It is common to be prescribed a combination of five to eight oral and inhaled medications.We investigated the impact of the pandemic on the dispensing of these specific medicines across England during the first wave. The English Prescribing Dataset was checked from January 2019 to February 2020 (14 months before the pandemic) and March to October 2020 (8 months after its onset).We find that since March 2020, salbutamol, aminophylline, ipratropium, and theophylline have not returned to their pre-pandemic levels. However, for all agents, there is great variability. Further analysis suggests these trends are not reversing, suggesting that people have not been using their medication as anticipated for 8 months, which is concerning.As a consequence of this work, we recommend that doctors specifically call these patients and discuss their health as a matter of urgency, we encourage patients to continue to take their medication. We advise policy changes to waive the NHS prescription levy for asthma and COPD medication and we seek more granular data for further harm quantification. There are several strengths and weaknesses to our analysis, and we need to conduct more studies to ask patients about their experiences.


Assuntos
Asma , COVID-19 , Doença Pulmonar Obstrutiva Crônica , Asma/diagnóstico , Asma/tratamento farmacológico , Asma/epidemiologia , Broncodilatadores/efeitos adversos , Prescrições de Medicamentos , Inglaterra/epidemiologia , Humanos , Ipratrópio/uso terapêutico , Pandemias , Doença Pulmonar Obstrutiva Crônica/diagnóstico , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico , Doença Pulmonar Obstrutiva Crônica/epidemiologia , SARS-CoV-2
13.
BJUI Compass ; 2(6): 419-427, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34518826

RESUMO

Objective: To examine the effect of the COVID-19 pandemic on gonadorelin analogue prescription for community patients in England. Materials and methods: We included data from all primary-care patients who had relevant prescriptions dispensed in the community in England. Descriptive statistics and interrupted time series analysis over 22 months (15 months before and 7 months after lockdown) was evaluated. Results: A total of 22 months' worth of data were analyzed (or 1 041 638 total items, monthly average 47 347 items). Goserelin; leuprorelin, and triptorelin are the medicines most used by total quantity in the study period. Simple descriptive statistics show that mean values have declined during the pandemic. The Interrupted Time Series (ARIMA Modeling) shows declining trends.After the pandemic's onset, we observe a statistically significant downward trend for goserelin (P = .017) and leuprorelin (P = .014). As these are the major constituents of the model, we interpret this overall data as showing a significant downward category trend. Aside from linearity, a significant step change was noted for leuprorelin (P = .029) showing an increase in prescription items with a similar effect that is close to being statistically significant for goserelin (P = .051).The actual cost of medicines shows minimal variation suggesting that prices of individual medicines have remained stable. The regional data showed variation but this was not statistically significant. In all cases, the Oct-20 figures are lower "year on year." This novel work reports the impact of a global pandemic on prescription volumes of prostate cancer (PCa) medicines. Conclusions: A worrying decrease in prescription medicines raises concerns for the care of PCa patients. We encourage diagnosed patients to discuss their planned care with their doctor.

14.
Int J Mol Sci ; 21(4)2020 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-32093254

RESUMO

In inflammatory bowel disease (IBD), the intestinal epithelium is characterized by increased permeability both in active disease and remission states. The genetic underpinnings of this increased intestinal permeability are largely unstudied, in part due to a lack of appropriate modelling systems. Our aim is to develop an in vitro model of intestinal permeability using induced pluripotent stem cell (iPSC)-derived human intestinal organoids (HIOs) and human colonic organoids (HCOs) to study barrier dysfunction. iPSCs were generated from healthy controls, adult onset IBD, and very early onset IBD (VEO-IBD) patients and differentiated into HIOs and HCOs. EpCAM+ selected cells were seeded onto Transwell inserts and barrier integrity studies were carried out in the presence or absence of pro-inflammatory cytokines TNFα and IFNγ. Quantitative real-time PCR (qRT-PCR), transmission electron microscopy (TEM), and immunofluorescence were used to determine altered tight and adherens junction protein expression or localization. Differentiation to HCO indicated an increased gene expression of CDX2, CD147, and CA2, and increased basal transepithelial electrical resistance compared to HIO. Permeability studies were carried out in HIO- and HCO-derived epithelium, and permeability of FD4 was significantly increased when exposed to TNFα and IFNγ. TEM and immunofluorescence imaging indicated a mislocalization of E-cadherin and ZO-1 in TNFα and IFNγ challenged organoids with a corresponding decrease in mRNA expression. Comparisons between HIO- and HCO-epithelium show a difference in gene expression, electrophysiology, and morphology: both are responsive to TNFα and IFNγ stimulation resulting in enhanced permeability, and changes in tight and adherens junction architecture. This data indicate that iPSC-derived HIOs and HCOs constitute an appropriate physiologically responsive model to study barrier dysfunction and the role of the epithelium in IBD and VEO-IBD.


Assuntos
Colo/metabolismo , Regulação da Expressão Gênica , Células-Tronco Pluripotentes Induzidas/metabolismo , Doenças Inflamatórias Intestinais/metabolismo , Mucosa Intestinal/metabolismo , Modelos Biológicos , Linhagem Celular , Colo/patologia , Humanos , Células-Tronco Pluripotentes Induzidas/patologia , Doenças Inflamatórias Intestinais/patologia , Mucosa Intestinal/patologia , Organoides/metabolismo , Organoides/patologia
15.
Int J Mol Sci ; 22(1)2020 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-33396621

RESUMO

Human intestinal organoids (HIOs) are increasingly being used to model intestinal responses to various stimuli, yet few studies have confirmed the fidelity of this modeling system. Given that the interferon-gamma (IFN-γ) response has been well characterized in various other cell types, our goal was to characterize the response to IFN-γ in HIOs derived from induced pluripotent stem cells (iPSCs). To achieve this, iPSCs were directed to form HIOs and subsequently treated with IFN-γ. Our results demonstrate that IFN-γ phosphorylates STAT1 but has little effect on the expression or localization of tight and adherens junction proteins in HIOs. However, transcriptomic profiling by microarray revealed numerous upregulated genes such as IDO1, GBP1, CXCL9, CXCL10 and CXCL11, which have previously been shown to be upregulated in other cell types in response to IFN-γ. Notably, "Response to Interferon Gamma" was determined to be one of the most significantly upregulated gene sets in IFN-γ-treated HIOs using gene set enrichment analysis. Interestingly, similar genes and pathways were upregulated in publicly available datasets contrasting the gene expression of in vivo biopsy tissue from patients with IBD against healthy controls. These data confirm that the iPSC-derived HIO modeling system represents an appropriate platform to evaluate the effects of various stimuli and specific environmental factors responsible for the alterations in the intestinal epithelium seen in various gastrointestinal conditions such as inflammatory bowel disease.


Assuntos
Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Interferon gama/farmacologia , Mucosa Intestinal/efeitos dos fármacos , Organoides/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Apoptose/genética , Linhagem Celular , Claudinas/genética , Claudinas/metabolismo , Perfilação da Expressão Gênica/métodos , Humanos , Indolamina-Pirrol 2,3,-Dioxigenase/genética , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Mucosa Intestinal/citologia , Mucosa Intestinal/metabolismo , Modelos Biológicos , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Organoides/citologia , Organoides/metabolismo
16.
Glob Chang Biol ; 25(12): 4081-4091, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31368188

RESUMO

The timing of annual events such as reproduction is a critical component of how free-living organisms respond to ongoing climate change. This may be especially true in the Arctic, which is disproportionally impacted by climate warming. Here, we show that Arctic seabirds responded to climate change by moving the start of their reproduction earlier, coincident with an advancing onset of spring and that their response is phylogenetically and spatially structured. The phylogenetic signal is likely driven by seabird foraging behavior. Surface-feeding species advanced their reproduction in the last 35 years while diving species showed remarkably stable breeding timing. The earlier reproduction for Arctic surface-feeding birds was significant in the Pacific only, where spring advancement was most pronounced. In both the Atlantic and Pacific, seabirds with a long breeding season showed a greater response to the advancement of spring than seabirds with a short breeding season. Our results emphasize that spatial variation, phylogeny, and life history are important considerations in seabird phenological response to climate change and highlight the key role played by the species' foraging behavior.


Assuntos
Migração Animal , Aves , Animais , Regiões Árticas , Mudança Climática , Filogenia , Reprodução , Estações do Ano
17.
Endocrinology ; 160(6): 1439-1447, 2019 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-31002310

RESUMO

DNA damage occurs as a result of environmental insults and aging and, if unrepaired, may lead to chromosomal instability and tumorigenesis. Because GH suppresses ataxia-telangiectasia mutated kinase phosphorylation, decreases DNA repair, and increases DNA damage accumulation, we elucidated whether GH effects on DNA damage are mediated through induced IGF-1. In nontumorous human colon cells, GH, but not IGF-1, increased DNA damage. Stably disrupted IGF-1 receptor (IGF-1R) by lentivirus-expressing short hairpin RNA in vitro or treatment with the IGF-1R phosphorylation inhibitor picropodophyllotoxin (PPP) in vitro and in vivo led to markedly induced GH receptor (GHR) abundance, rendering cells more responsive to GH actions. Suppressing IGF-1R triggered DNA damage in both normal human colon cells and three-dimensional human intestinal organoids. DNA damage was further increased when cells with disrupted IGF-1R were treated with GH. Because GH induction of DNA damage accumulation appeared to be mediated not by IGF-1R but probably by more abundant GH receptor expression, we injected athymic mice with GH-secreting xenografts and then treated them with PPP. In these mice, high circulating GH levels were associated with increased colon DNA damage despite disrupted IGF-1R activity (P < 0.01), whereas GHR levels were also induced. Further confirming that GH effects on DNA damage are directly mediated by GHR signaling, GHR-/- mice injected with PPP did not show increased DNA damage, whereas wild-type mice with intact GHR exhibited increased colon DNA damage in the face of IGF-1 signaling suppression. The results indicate that GH directly induces DNA damage independent of IGF-1.


Assuntos
Colo/efeitos dos fármacos , Dano ao DNA/efeitos dos fármacos , Hormônio do Crescimento/farmacologia , Fator de Crescimento Insulin-Like I/farmacologia , Animais , Linhagem Celular Tumoral , Colo/metabolismo , Relação Dose-Resposta a Droga , Humanos , Camundongos , Camundongos Knockout , Fosforilação/efeitos dos fármacos , Receptor IGF Tipo 1/antagonistas & inibidores , Receptor IGF Tipo 1/metabolismo , Receptores da Somatotropina/genética , Receptores da Somatotropina/metabolismo , Transdução de Sinais/efeitos dos fármacos
18.
JCI Insight ; 4(3)2019 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-30728323

RESUMO

Growth hormone (GH) decreases with age, and GH therapy has been advocated by some to sustain lean muscle mass and vigor in aging patients and advocated by athletes to enhance performance. Environmental insults and aging lead to DNA damage, which - if unrepaired - results in chromosomal instability and tumorigenesis. We show that GH suppresses epithelial DNA damage repair and blocks ataxia telangiectasia mutated (ATM) kinase autophosphorylation with decreased activity. Decreased phosphorylation of ATM target proteins p53, checkpoint kinase 2 (Chk2), and histone 2A variant led to decreased DNA repair by nonhomologous end-joining. In vivo, prolonged high GH levels resulted in a 60% increase in unrepaired colon epithelial DNA damage. GH suppression of ATM was mediated by induced tripartite motif containing protein 29 (TRIM29) and attenuated tat interacting protein 60 kDa (Tip60). By contrast, DNA repair was increased in human nontumorous colon cells (hNCC) where GH receptor (GHR) was stably suppressed and in colon tissue derived from GHR-/- mice. hNCC treated with etoposide and GH showed enhanced transformation, as evidenced by increased growth in soft agar. In mice bearing human colon GH-secreting xenografts, metastatic lesions were increased. The results elucidate a mechanism underlying GH-activated epithelial cell transformation and highlight an adverse risk for inappropriate adult GH treatment.

19.
Mucosal Immunol ; 12(3): 644-655, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30617301

RESUMO

T helper 9 (TH9) cells are important for the development of inflammatory and allergic diseases. The TH9 transcriptional network converges signals from cytokines and antigen presentation but is incompletely understood. Here, we identified TL1A, a member of the TNF superfamily, as a strong inducer of mouse and human TH9 differentiation. Mechanistically, TL1A induced the expression of the transcription factors BATF and BATF3 and facilitated their binding to the Il9 promoter leading to enhanced secretion of IL-9. BATF- and BATF3-deficiencies impaired IL-9 secretion under TH9 and TH9-TL1A-polarizing conditions. In vivo, using a T-cell transfer model, we demonstrated that TL1A promoted IL-9-dependent, TH9 cell-induced intestinal and lung inflammation. Neutralizing IL-9 antibodies attenuated TL1A-driven mucosal inflammation. Batf3-/- TH9-TL1A cells induced reduced inflammation and cytokine expression in vivo compared to WT cells. Our results demonstrate that TL1A promotes TH9 cell differentiation and function and define a role for BATF3 in T-cell-driven mucosal inflammation.


Assuntos
Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Inflamação/imunologia , Doenças Inflamatórias Intestinais/imunologia , Interleucina-9/metabolismo , Proteínas Repressoras/metabolismo , Linfócitos T Auxiliares-Indutores/imunologia , Animais , Anticorpos Neutralizantes/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica/genética , Diferenciação Celular , Células Cultivadas , Humanos , Interleucina-9/genética , Interleucina-9/imunologia , Ativação Linfocitária , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Regiões Promotoras Genéticas/genética , Ligação Proteica , Proteínas Repressoras/genética , Transdução de Sinais , Membro 15 da Superfamília de Ligantes de Fatores de Necrose Tumoral/metabolismo
20.
Cell Mol Gastroenterol Hepatol ; 5(4): 669-677.e2, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29930984

RESUMO

BACKGROUND AND AIMS: Human intestinal organoids derived from induced pluripotent stem cells have tremendous potential to elucidate the intestinal epithelium's role in health and disease, but it is difficult to directly assay these complex structures. This study sought to make this technology more amenable for study by obtaining epithelial cells from induced pluripotent stem cell-derived human intestinal organoids and incorporating them into small microengineered Chips. We then investigated if these cells within the Chip were polarized, had the 4 major intestinal epithelial subtypes, and were biologically responsive to exogenous stimuli. METHODS: Epithelial cells were positively selected from human intestinal organoids and were incorporated into the Chip. The effect of continuous media flow was examined. Immunocytochemistry and in situ hybridization were used to demonstrate that the epithelial cells were polarized and possessed the major intestinal epithelial subtypes. To assess if the incorporated cells were biologically responsive, Western blot analysis and quantitative polymerase chain reaction were used to assess the effects of interferon (IFN)-γ, and fluorescein isothiocyanate-dextran 4 kDa permeation was used to assess the effects of IFN-γ and tumor necrosis factor-α on barrier function. RESULTS: The optimal cell seeding density and flow rate were established. The continuous administration of flow resulted in the formation of polarized intestinal folds that contained Paneth cells, goblet cells, enterocytes, and enteroendocrine cells along with transit-amplifying and LGR5+ stem cells. Administration of IFN-γ for 1 hour resulted in the phosphorylation of STAT1, whereas exposure for 3 days resulted in a significant upregulation of IFN-γ related genes. Administration of IFN-γ and tumor necrosis factor-α for 3 days resulted in an increase in intestinal permeability. CONCLUSIONS: We demonstrate that the Intestine-Chip is polarized, contains all the intestinal epithelial subtypes, and is biologically responsive to exogenous stimuli. This represents a more amenable platform to use organoid technology and will be highly applicable to personalized medicine and a wide range of gastrointestinal conditions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...