Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 14(19)2022 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-36235874

RESUMO

Small plastic packaging films make up a quarter of all packaging waste generated annually in Austria. As many plastic packaging films are multilayered to give barrier properties and strength, this fraction is considered hardly recyclable and recovered thermally. Besides, they can not be separated from recyclable monolayer films using near-infrared spectroscopy in material recovery facilities. In this paper, an experimental sensor-based sorting setup is used to demonstrate the effect of adapting a near-infrared sorting rig to enable measurement in transflection. This adaptation effectively circumvents problems caused by low material thickness and improves the sorting success when separating monolayer and multilayer film materials. Additionally, machine learning approaches are discussed to separate monolayer and multilayer materials without requiring the near-infrared sorter to explicitly learn the material fingerprint of each possible combination of layered materials. Last, a fast Fourier transform is shown to reduce destructive interference overlaying the spectral information. Through this, it is possible to automatically find the Fourier component at which to place the filter to regain the most spectral information possible.

2.
Polymers (Basel) ; 14(17)2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-36080696

RESUMO

This work covers a lifecycle assessment of monolayer and multilayer films to quantify the environmental impacts of changing the management of plastic film waste. This lifecycle assessment offers the possibility of quantifying the environmental impacts of processes along the lifecycle of monolayer and multilayer films and mapping deviating impacts due to changed process parameters. Based on the status quo, the changes in global warming potential and abiotic fossil resource depletion were calculated in different scenarios. The changes included collecting, sorting, and recycling mono- and multilayer films. The "Functional Unit" under consideration comprised 1000 kg of plastic film waste, generated as post-consumer waste in Austria and captured in the lightweight packaging collection system. The results showed the reduction of environmental impacts over product lifecycles by improving waste management and creating a circular economy. Recycling all plastic film reduced global warming potential by 90% and abiotic fossil resource consumption by 93%. The necessary optimisation steps to meet the politically required recycling rates by 2025 and 2030 could be estimated, and the caused environmental impacts are presented. This work shows the need for increased collection, recycling, and significant improvement in the sorting of films to minimise global warming potential and resource consumption.

3.
Polymers (Basel) ; 14(8)2022 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-35458302

RESUMO

This work presents a hand sorting trial of Austrian plastic packaging, which showed that according to an extrapolation of the 170,000 t separately collected waste collected in Austria, 30 wt% are flexible 2D plastic packaging. Further, the applications for these materials have been catalogued. The composition of these films was evaluated via Fourier-Transformed Infrared Spectroscopy, which showed that 31% of all films were made of polyethene, 39% of polypropylene, 11% of polyethene-polyethene terephthalate composite, and 8% of a polyethene-polypropylene composite, further resulting in the calculation that of all flexible packaging, 20 wt% are multilayer films. These findings were used to calculate the latent potential for raising the current recycling quota of 25.7% to the mandated rate of 55% in 2030. To this end, scenarios depicting different approaches to sorting and recycling small films were evaluated. It was calculated that through improving the sorting of films the recycling rate could be increased to 35.5%. This approach allows for the recycling of monolayer films by avoiding contamination with foreign materials introduced by multilayer films that impede the recyclates' mechanical properties. The evaluation showed that sorting multilayer films of this fraction could raise the recycling quota further to 38.9%.

4.
Polymers (Basel) ; 13(2)2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33467566

RESUMO

The main focus of this work is to investigate the degradation behavior of two newly developed encapsulants for photovoltaic applications (thermoplastic polyolefin (TPO) and polyolefin elastomer (POE)), compared to the most widely used Ethylene Vinyl Acetate (EVA) upon exposure to two different artificial ageing tests (with and without ultraviolet (UV) irradiation). Additive composition, optical and thermal properties and chemical structure (investigated by means of Thermal Desorption Gas Chromatography coupled to Mass Spectrometry, UV-Visible-Near Infrared spectroscopy, Differential Scanning Calorimetry, Thermogravimetric Analysis and Fourier Transform-Infrared spectroscopy, respectively) of the analyzed polymers were monitored throughout the exposure to artificial ageing tests. Relevant signs of photo-oxidation were detectable for TPO after the UV test, as well as a depletion of material's stabilizers. Signs of degradation for EVA and POE were detected when the UV dose applied was equal to 200 kW h m-2. A novel approach is presented to derive information of oxidation induction time/dose from thermogravimetric measurements that correlate well with results obtained by using oxidation indices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...