Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 16(21): 27979-27987, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38752682

RESUMO

Understanding wear, a critical factor impacting the reliability of mechanical systems, is vital for nano-, meso-, and macroscale applications. Due to the complex nature of nanoscale wear, the behavior of nanomaterials such as two-dimensional materials under cyclic wear and their surface damage mechanism is yet unexplored. In this study, we used atomic force microscopy coupled with molecular dynamic simulations to statistically examine the cyclic wear behavior of monolayer graphene, MoS2, and WSe2. We show that graphene displays exceptional durability and lasts over 3000 cycles at 85% of the applied critical normal load before failure, while MoS2 and WSe2 last only 500 cycles on average. Moreover, graphene undergoes catastrophic failure as a result of stress concentration induced by local out-of-plane deformation. In contrast, MoS2 and WSe2 exhibit intermittent failure, characterized by damage initiation at the edge of the wear track and subsequent propagation throughout the entire contact area. In addition to direct implications for MEMS and NEMS industries, this work can also enable the optimization of the use of 2D materials as lubricant additives on a macroscopic level.

2.
Small ; 19(41): e2302145, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37291948

RESUMO

The interface between two-dimensional (2D) materials and soft, stretchable polymeric substrates is a governing criterion in proposed 2D materials-based flexible devices. This interface is dominated by weak van der Waals forces and there is a large mismatch in elastic constants between the contact materials. Under dynamic loading, slippage, and decoupling of the 2D material is observed, which then leads to extensive damage propagation in the 2D lattice. Herein, graphene is functionalized through mild and controlled defect engineering for a fivefold increase in adhesion at the graphene-polymer interface. Adhesion is characterized experimentally using buckling-based metrology, while molecular dynamics simulations reveal the role of individual defects in the context of adhesion. Under in situ cyclic loading, the increased adhesion inhibits damage initiation and interfacial fatigue propagation within graphene. This work offers insight into achieving dynamically reliable and robust 2D material-polymer contacts, which can facilitate the development of 2D materials-based flexible devices.

3.
Nano Lett ; 22(8): 3356-3363, 2022 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-35385668

RESUMO

2D materials are well-known for their low-friction behavior by modifying the interfacial forces at atomic surfaces. Of the wide range of 2D materials, MXenes represent an emerging material class but their lubricating behavior has been scarcely investigated. Herein, the friction mechanisms of 2D Ti3C2Tx MXenes are demonstrated which are attributed to their surface terminations. We find that Ti3C2Tx MXenes do not exhibit the well-known frictional layer dependence of other 2D materials. Instead, the nanoscale lubricity of 2D MXenes is governed by the termination species resulting from synthesis. Annealing the MXenes demonstrate a 7% reduction in OH termination which translates to a 16-57% reduction of friction in agreement with DFT calculations. Finally, the stability of MXene flakes is demonstrated upon isolation from their aqueous environment. This work indicates that MXenes can provide sustainable lubricity at any thickness which makes them uniquely positioned among 2D material lubricants.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...