Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Anal Chem ; 78(4): 1306-11, 2006 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-16478126

RESUMO

Thin films of metallic nanowire bundles derived from the Chevrel compound LiMo3Se3 undergo reversible increases of their electrical resistance (up to 70%) upon exposure to vapors of organic solvents (Qi, X. B.; Osterloh, F. E. J. Am. Chem. Soc. 2005, 127 (21), 7666-7667). Using quartz crystal microbalance measurements with four analytes, we demonstrate here that the temporal and steady-state resistance changes of the films depend on the time following the adsorption and on the number of molecules that adsorb to the nanowire films at a given pressure. The adsorption ability of the films and the corresponding film resistance increase in the row: hexane < THF < ethanol < DMSO, closely following the polarities of the solvents. On average, approximately 10(5) analyte molecules per LiMo3Se3 unit are required to produce a measurable electrical response. Atomic force microscopy scans on nanowire films reveal that analytes deposit on top of the nanowire bundles and cause the films to swell by approximately 6% in volume. The temporal and steady-state resistance data of the LiMo3Se3 chemiresistors can be explained by assuming that coating of the nanowire bundles with analyte molecules reduces the interwire charge transport in the films.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA