Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Sensors (Basel) ; 22(12)2022 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-35746384

RESUMO

Many authors have been working on approaches that can be applied to social robots to allow a more realistic/comfortable relationship between humans and robots in the same space. This paper proposes a new navigation strategy for social environments by recognizing and considering the social conventions of people and groups. To achieve that, we proposed the application of Delaunay triangulation for connecting people as vertices of a triangle network. Then, we defined a complete asymmetric Gaussian function (for individuals and groups) to decide zones where the robot must avoid passing. Furthermore, a feature generalization scheme called socialization feature was proposed to incorporate perception information that can be used to change the variance of the Gaussian function. Simulation results have been presented to demonstrate that the proposed approach can modify the path according to the perception of the robot compared to a standard A* algorithm.


Assuntos
Robótica , Algoritmos , Simulação por Computador , Humanos , Distribuição Normal , Robótica/métodos , Interação Social
2.
Sensors (Basel) ; 21(12)2021 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-34204348

RESUMO

The planning of safe paths is an important issue for autonomous robot systems. The Probabilistic Foam method (PFM) is a planner that guarantees safe paths bounded by a sequence of structures called bubbles that provides safe regions. This method performs the planning by covering the free configuration space with bubbles, an approach analogous to a breadth-first search. To improve the propagation process and keep the safety, we present three algorithms based on Probabilistic Foam: Goal-biased Probabilistic Foam (GBPF), Radius-biased Probabilistic Foam (RBPF), and Heuristic-guided Probabilistic Foam (HPF); the last two are proposed in this work. The variant GBPF is fast, HPF finds short paths, and RBPF finds high-clearance paths. Some simulations were performed using four different maps to analyze the behavior and performance of the methods. Besides, the safety was analyzed considering the new propagation strategies.


Assuntos
Robótica , Algoritmos , Simulação por Computador
3.
J Intell Robot Syst ; 102(2): 34, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34025033

RESUMO

With advances in science and technology, several innovative researches have been developed trying to figure out the main problems related to children's learning. It is known that issues such as frustration and inattention, between others, affect student learning. In this fashion, robotics is an important resource that can be used towards helping to solve these issues, empowering our students in order to push their learning up. In this case, robotic tools are generally used considering two different paradigms: as the main focus and as a secondary focus. Actually, these paradigms define the way that Educational Robotics is implemented in schools. Most of the approaches have implemented it as the main focus, which is teaching Robotics. Nevertheless, there are quite a few works that implement robotics as a secondary focus, which is currently assisting the learning process in several disciplines. The main contribution of this work is a complete three steps methodology for Robotics in Education to guide projects in order to either use it alone or to teach robotics with others topics. Our experiments show the importance of devising a study plan and evaluation method because the process is iterative and could improve the final results. As a novelty, here we have joined and extended our previous works by proposing a new set of methods with guidelines and strategies for applying the educational robotics standard curriculum for kids, named EDUROSC-Kids. We propose several tools that have been developed to organize the learning topics of Robotics for children, including the desired outcomes during the learning process. As said our current approach is divided in three steps (or phases): setting up the environment, defining the project, and performing evaluation. The proposed curriculum organizes robotics contents into five disciplines: Robotics and Society, Mechanics, Electronics, Programming, and Control Theory. Also, it considers a set of topics for each discipline and defines the level of knowledge that is recommended to achieve each group of children based on Bloom's Nomenclature. The contribution on this paper is a crucial step towards linking the general learning process with Educational Robotics approaches. Our methodology is validated by presenting practical experiences with application of EDUROSC-kids and the proposed method with a rubric guidelines into groups of children.

4.
Micromachines (Basel) ; 12(2)2021 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-33668527

RESUMO

Nowadays, mobile robots are playing an important role in different areas of science, industry, academia and even in everyday life. In this sense, their abilities and behaviours become increasingly complex. In particular, in indoor environments, such as hospitals, schools, banks and museums, where the robot coincides with people and other robots, its movement and navigation must be programmed and adapted to robot-robot and human-robot interactions. However, existing approaches are focused either on multi-robot navigation (robot-robot interaction) or social navigation with human presence (human-robot interaction), neglecting the integration of both approaches. Proxemic interaction is recently being used in this domain of research, to improve Human-Robot Interaction (HRI). In this context, we propose an autonomous navigation approach for mobile robots in indoor environments, based on the principles of proxemic theory, integrated with classical navigation algorithms, such as ORCA, Social Momentum, and A*. With this novel approach, the mobile robot adapts its behaviour, by analysing the proximity of people to each other, with respect to it, and with respect to other robots to decide and plan its respective navigation, while showing acceptable social behaviours in presence of humans. We describe our proposed approach and show how proxemics and the classical navigation algorithms are combined to provide an effective navigation, while respecting social human distances. To show the suitability of our approach, we simulate several situations of coexistence of robots and humans, demonstrating an effective social navigation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...