Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Methods Mol Biol ; 2967: 223-238, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37608115

RESUMO

Inverse PCR is a powerful tool for the rapid introduction of desired mutations at desired positions in a circular double-stranded DNA sequence. In this technique, custom-designed mutant primers oriented in the inverse direction are used to amplify the entire circular template with incorporation of the required mutation(s). By careful primer design, it can be used to perform such diverse modifications as the introduction of point or multiple mutations, the insertion of new sequences, and even sequence deletions. Three primer formats are commonly used, nonoverlapping, partially overlapping, and fully overlapping primers, and here we describe the use of nonoverlapping primers for introduction of a point mutation. Use of such a primer setup in the PCR, with one of the primers containing the desired mismatch mutation, results in the amplification of a linear, double-stranded, mutated product. Methylated template DNA is removed from the non-methylated PCR product by DpnI digestion, and the PCR product is then phosphorylated by polynucleotide kinase treatment before being recircularized by ligation and transformed to E. coli. This relatively simple site-directed mutagenesis procedure is of major importance in biology and biotechnology where it is commonly employed for the study and engineering of DNA, RNA, and proteins.


Assuntos
Mutagênese Sítio-Dirigida , Reação em Cadeia da Polimerase , Mutagênese Sítio-Dirigida/métodos , Reação em Cadeia da Polimerase/métodos , Mutação , Engenharia de Proteínas , Temperatura
2.
Biotechnol Adv ; 65: 108148, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37030552

RESUMO

Endo-1,4-ß-xylanases (EC 3.2.1.8) are O-glycoside hydrolases that cleave the internal ß-1,4-D-xylosidic linkages of the complex plant polysaccharide xylan. They are produced by a vast array of organisms where they play critical roles in xylan saccharification and plant cell wall hydrolysis. They are also important industrial biocatalysts with widespread application. A large and ever growing number of xylanases with wildly different properties and functionalites are known and a better understanding of these would enable a more effective use in various applications. The Carbohydrate-Active enZYmes database (CAZy), which classifies evolutionarily related proteins into a glycoside hydrolase family-subfamily organisational scheme has proven powerful in understanding these enzymes. Nevertheless, ambiguity currently exists as to the number of glycoside hydrolase families and subfamilies harbouring catalytic domains with true endoxylanase activity and as to the specific characteristics of each of these families/subfamilies. This review seeks to clarify this, identifying 9 glycoside hydrolase families containing enzymes with endo-1,4-ß-xylanase activity and discussing their properties, similarities, differences and biotechnological perspectives. In particular, substrate specificities and hydrolysis patterns and the structural determinants of these are detailed, with taxonomic aspects of source organisms being also presented. Shortcomings in current knowledge and research areas that require further clarification are highlighted and suggestions for future directions provided. This review seeks to motivate further research on these enzymes and especially of the lesser known endo-1,4-ß-xylanase containing families. A better understanding of these enzymes will serve as a foundation for the knowledge-based development of process-fitted endo-1,4-ß-xylanases and will accelerate their development for use with even the most recalcitrant of substrates in the biobased industries of the future.


Assuntos
Endo-1,4-beta-Xilanases , Glicosídeo Hidrolases , Humanos , Endo-1,4-beta-Xilanases/genética , Endo-1,4-beta-Xilanases/química , Endo-1,4-beta-Xilanases/metabolismo , Glicosídeo Hidrolases/metabolismo , Xilanos/química , Especificidade por Substrato , Proteínas de Bactérias/metabolismo
3.
Biotechnol Biofuels ; 11: 251, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30237826

RESUMO

BACKGROUND: Applying very high gravity (VHG) fermentation conditions to the sugarcane juice (SCJ) bioethanol industry would improve its environmental and economic sustainability without the need for major infrastructure changes or investments. It could enable a decrease in the consumption of biological and natural resources (cane/land, water and energy) while maintaining acceptable production parameters. The present study attempts to demonstrate and characterise an effective industrially relevant SCJ-VHG fermentation process. RESULTS: An industry-like SCJ-VHG bioethanol production process with 30 and 35 °Bx broth was employed to investigate the effects of both the yeast strain used and nitrogen source supplementation on process yield, process productivity, biomass viability, glycerol concentration and retention-associated gene expression. Process performance was shown to be variably affected by the different process conditions investigated. Highest process efficiency, with a 17% (w/v) ethanol yield and only 0.2% (w/v) sugar remaining unfermented, was observed with the Saccharomyces cerevisiae industrial strain CAT-1 in 30 °Bx broth with urea supplementation. In addition, efficient retention of glycerol by the yeast strain was identified as a requisite for better fermentation and was consistent with a higher expression of glycerol permease STL1 and channel FPS1. Urea was shown to promote the deregulation of STL1 expression, overcoming glucose repression. The consistency between Fps1-mediated ethanol secretion and ethanol in the extracellular media reinforces previous suggestions that ethanol might exit the cell through the Fps1 channel. CONCLUSIONS: This work brings solid evidence in favour of the utilisation of VHG conditions in SCJ fermentations, bringing it a step closer to industrial application. SCJ concentrated up to 30 °Bx maintains industrially relevant ethanol production yield and productivity, provided the broth is supplemented with a suitable nitrogen source and an appropriate industrial bioethanol-producing yeast strain is used. In addition, the work contributes to a better understanding of the VHG-SCJ process and the variable effects of process parameters on process efficiency and yeast strain response.

4.
Methods Mol Biol ; 1620: 87-100, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28540701

RESUMO

Inverse PCR is a powerful tool for the rapid introduction of desired mutations at desired positions in a circular double-stranded DNA sequence. Here, custom-designed mutant primers oriented in the inverse direction are used to amplify the entire circular template with incorporation of the required mutation(s). By careful primer design it can be used to perform such diverse modifications as the introduction of point mutations and multiple mutations, the insertion of new sequences, and even sequence deletions. Three primer formats are commonly used; nonoverlapping, partially overlapping and fully overlapping primers, and here we describe the use of nonoverlapping primers for introduction of a point mutation. Use of such a primer setup in the PCR reaction, with one of the primers containing the desired mismatch mutation, results in the amplification of a linear, double-stranded, mutated product. Methylated template DNA is removed from the nonmethylated PCR product by DpnI digestion and the PCR product is then phosphorylated by polynucleotide kinase treatment before being recircularized by ligation, and transformed to E. coli. This relatively simple site-directed mutagenesis procedure is of major importance in biology and biotechnology today where it is commonly employed for the study and engineering of DNA, RNA, and proteins.


Assuntos
Primers do DNA/genética , Mutagênese Sítio-Dirigida/métodos , Mutação Puntual/genética , Reação em Cadeia da Polimerase/métodos , DNA/genética
5.
Enzyme Microb Technol ; 96: 163-169, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27871378

RESUMO

A prerequisite to the use of any enzyme in any industrial process is an understanding of its activity and stability under process conditions. Glycoside hydrolase family 8 enzymes include many important biotechnological biocatalysts yet little is known of the performance of these with respect to pH. A better understanding of this parameter and its relationship to structure and function in these enzymes will allow for an improved use of these in industry as well as an enhanced ability in their engineering and optimisation for a particular application. An in-depth analysis of the pH induced changes in activity, irreversible inactivation, conformation, stability and solubility of a commercial glycoside hydrolase family 8 xylanase was carried out with the aim of identifying the factors determining the pH dependence of this enzyme. Our study showed that different phenomena play different roles at the various pHs examined. Both reversible and irreversible processes are involved at acidic pHs, with the irreversible processes dominating and being due to protein aggregation and precipitation. At basic pHs, loss of activity is principally due to reversible processes, possibly deprotonation of an essential catalytic residue, but at higher pHs, near the pI of the protein, precipitation again dominates while structure unfolding was discerned at the higher pHs investigated. Such insights demonstrate the complexity of factors involved in the pH dependence of proteins and advances our knowledge on design principles and concepts for engineering proteins. Our results highlight the major role of protein precipitation in activity and stability losses at both low and high pHs but it is proposed that different strategies be used in tailoring the enzyme to overcome this in each case. Indeed the detailed understanding obtained here will allow for a more focused, informed and hence successful tailoring of glycoside hydrolase family 8 proteins for a specific pH and process application.


Assuntos
Endo-1,4-beta-Xilanases/química , Endo-1,4-beta-Xilanases/metabolismo , Glicosídeo Hidrolases/química , Glicosídeo Hidrolases/metabolismo , Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Biocatálise , Endo-1,4-beta-Xilanases/antagonistas & inibidores , Estabilidade Enzimática , Glicosídeo Hidrolases/antagonistas & inibidores , Concentração de Íons de Hidrogênio , Cinética , Engenharia de Proteínas , Estrutura Terciária de Proteína , Pseudoalteromonas/enzimologia , Solubilidade , Espectrometria de Fluorescência
6.
Sci Rep ; 6: 39329, 2016 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-27982135

RESUMO

Silk-elastin-like proteins (SELPs) are a family of genetically engineered recombinant protein polymers exhibiting mechanical and biological properties suited for a wide range of applications in the biomedicine and materials fields. They are being explored as the next generation of biomaterials but low productivities and use of antibiotics during production undermine their economic viability and safety. We have developed an industrially relevant, scalable, fed-batch process for the high level production of a novel SELP in E. coli in which the commonly used antibiotic selection marker of the expression vector is exchanged for a post segregational suicide system, the separate-component-stabilisation system (SCS). SCS significantly augments SELP productivity but also enhances the product safety profile and reduces process costs by eliminating the use of antibiotics. Plasmid content increased following induction but no significant differences in plasmid levels were discerned when using SCS or the antibiotic selection markers under the controlled fed-batch conditions employed. It is suggested that the absence of competing plasmid-free cells improves host cell viability and enables increased productivity with SCS. With the process developed, 12.8 g L-1 purified SELP was obtained, this is the highest SELP productivity reported to date and clearly demonstrates the commercial viability of these promising polymers.


Assuntos
Biotecnologia/métodos , Elastina/metabolismo , Escherichia coli/metabolismo , Genética Microbiana/métodos , Proteínas Recombinantes/metabolismo , Seleção Genética , Elastina/genética , Escherichia coli/crescimento & desenvolvimento , Instabilidade Genômica , Viabilidade Microbiana , Plasmídeos , Proteínas Recombinantes/genética
7.
Biomacromolecules ; 15(7): 2701-8, 2014 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-24884240

RESUMO

Silk-elastin-like proteins (SELPs) have enormous potential for use as customizable biomaterials in numerous biomedical and materials applications, yet success in harnessing this potential has been limited by the lack of a commercially viable industrially relevant production process. We have developed a scalable fed-batch production approach which enables a SELP volumetric productivity of 4.3 g L(-1) with E. coli BL21(DE3). This is the highest SELP productivity reported to date and is 50-fold higher than that reported by other groups. As compared to typical fed-batch processes, high preinduction growth rates and low inducer and oxygen concentrations are allowed whereas reduced postinduction feeding rates are preferred. Limiting factors were identified and productivity was found to be strongly influenced by a trade-off between the rate of production and plasmid stability. The process developed is robust, reproducible, and applicable to scale up to the industrial level and moves these biopolymers a step closer to the marketplace.


Assuntos
Elastina/biossíntese , Escherichia coli/metabolismo , Proteínas Recombinantes de Fusão/biossíntese , Seda/biossíntese , Técnicas de Cultura Celular por Lotes , Escherichia coli/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...