Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanoscale ; 10(43): 20393-20404, 2018 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-30376019

RESUMO

Due to the competition between numerous physicochemical variables during formation and processing, platinum nanocatalysts typically contain a mixture of shapes, distributions of sizes, and a considerable degree of surface imperfection. Structural imperfection and sample polydispersivity are inevitable at scale, but accepting bulk and surface diversity as legitimate design features provides new opportunities for nanoparticle design. In recent years disorder and anisotropy have been embraced as useful design parameters but predicting the impact of uncontrollable imperfection a priori is challenging. In the present work we have created an ensemble of uniquely imperfect nanoparticles extracted from classical molecular dynamics trajectories and applied statistical filters to restrict the ensemble in ways that reflect common industrial design principles. We find that targeting different sizes and size distributions may be an effective way of promoting or suppressing internal disorder or crystallinity (as required), but the degree of anisotropy of the particle as a whole has a greater impact on the population of different types of surface ordering and active sites. These results indicate that tuning of disordered and anisotropic Pt nanoparticles is possible, but it is not as straightforward as geometrically ideal nanoparticles with a high degree of crystallinity. It is unlikely that a synthesis strategy could eliminate this diversity entirely, or ensure this type of structural complexity does not develop post-synthesis under operational conditions, but it may be possible to bias the formation of specific bulk structures and the surface anisotropy.

2.
Angew Chem Int Ed Engl ; 57(32): 10241-10245, 2018 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-29896878

RESUMO

Achieving stability with highly active Ru nanoparticles for electrocatalysis is a major challenge for the oxygen evolution reaction. As improved stability of Ru catalysts has been shown for bulk surfaces with low-index facets, there is an opportunity to incorporate these stable facets into Ru nanoparticles. Now, a new solution synthesis is presented in which hexagonal close-packed structured Ru is grown on Au to form nanoparticles with 3D branches. Exposing low-index facets on these 3D branches creates stable reaction kinetics to achieve high activity and the highest stability observed for Ru nanoparticle oxygen evolution reaction catalysts. These design principles provide a synthetic strategy to achieve stable and active electrocatalysts.

3.
Nanoscale ; 9(4): 1502-1510, 2017 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-28067382

RESUMO

Controlling the structure of nanocrystals is an effective way to tune their properties and improve performance in a wide variety of applications. However, the atomic pathways for achieving this goal are difficult to identify and exercise, due to competing kinetic and thermodynamic influences during formation. In particular, an understanding of how symmetry, and symmetry breaking, determine nanocrystal morphology would significantly advance our ability to produce nanomaterials with prescribed functions. In this study we present results of a detailed computational study into the atomic structure of platinum nanoparticles at early growth stages of formation, as a function of temperature and atomic deposition rates. We investigate the impact of different types of crystalline seeds and characterize the emergent structures via simulated High Resolution Transmission Electron Microscopy (HRTEM) images. We find that the choice of initial seed is an important driver for symmetry breaking, due to a combination of atomic deposition and etching on different seed facets. A mix of low index facets causes the formation of important surface defects, in addition to the absorption/adsorption of single atoms, which can be correlated with different catalytic reactions as the process perpetuates. These findings provide new insights into nanocrystal shape-control mechanisms and suggest new opportunities for future design of this important class of nanomaterials.

4.
J Phys Chem C Nanomater Interfaces ; 119(1): 710-715, 2015 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-25598860

RESUMO

MoS2 has been the focus of extensive research due to its potential applications. More recently, the mechanical properties of MoS2 layers have raised interest due to applications in flexible electronics. In this article, we show in situ transmission electron microcsopy (TEM) observation of the mechanical response of a few layers of MoS2 to an external load. We used a scanning tunneling microscope (STM) tip mounted on a TEM stage to induce deformation on nanosheets of MoS2 containing few layers. The results confirm the outstanding mechanical properties on the MoS2. The layers can be bent close to 180°. However, when the tip is retrieved the initial structure is recovered. Evidence indicates that there is a significant bond reconstruction during the bending with an outstanding capability to recover the initial bond structure. The results show that flexibility of three layers of MoS2 remains the same as a single layer while increasing the bending modulus by 3 orders of magnitude. Our findings are consistent with theoretical calculations and confirm the great potential of MoS2 for applications.

5.
Phys Chem Chem Phys ; 16(5): 1820-3, 2014 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-24343038

RESUMO

It is known that the surface-plasmon resonance (SPR) in small spherical Au nanoparticles of about 2 nm is strongly damped. We demonstrate that small Au nanorods with a high aspect ratio develop a strong longitudinal SPR, with intensity comparable to that in Ag rods, as soon as the resonance energy drops below the onset of the interband transitions due to the geometry. We present ab initio calculations of time-dependent density-functional theory of rods with lengths of up to 7 nm. By changing the length and width, not only the energy but also the character of the resonance in Au rods can be tuned. Moreover, the aspect ratio alone is not sufficient to predict the character of the spectrum; the absolute size matters.

6.
J Mater Res ; 28(2): 240-249, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-25429189

RESUMO

The structural, electronic and magnetic properties of quasi-one-dimensional MoS2 nanowires, passivated by extra sulfur, have been determined using ab initio density-functional theory. The nanostructures were simulated using several different models based on experimental electron microscopy images. It is found that independently of the geometrical details and the coverage of extra sulfur at the Mo-edge, quasi-one-dimensional metallic states are predominant in all the low-energy model structures despite their reduced dimensionality. These metallic states are localized mainly at the edges. However, the electronic and magnetic character of the NWs does not depend only on the S saturation but also on the symmetry configuration of the S edge atoms. Our results show that for the same S saturation the magnetization can be decreased by increasing the pairing of the S and Mo edge atoms. In spite of the observed pairing of S dimers at the Mo-edge, the nanowires do not experience a Peierls-like metal-insulator transition.

7.
Nanoscale ; 2(3): 335-42, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20644815

RESUMO

Nanoparticles are the cornerstone of nanotechnology. Their crystal structure and relation to shape are still open problems despite a lot of advances in the field. The classical theory of nanoparticle stability predicts that for sizes <1.5-2 nm the icosahedral structure should be the most stable, then between around 2-5 nm, the decahedral shape should be the most stable. Beyond that, face-centered-cubic (FCC) structures will be the predominant phase. However, in the experimental side, icosahedral (I(h)) and decahedral (D(h)) particles can be observed much beyond the 5 nm limit. In fact, it is possible to find I(h) and D(h) particles even in the mesoscopic range. Conversely, it is possible to find FCC particles with a size <1.5 nm. In this paper we review a number of the mechanisms proposed in the literature that allow the stabilization of nanoparticles. Some of the mechanisms are very interrelated and it becomes difficult to distinguish between them.


Assuntos
Nanopartículas/química , Nanotecnologia , Tamanho da Partícula
8.
Comp Biochem Physiol C Toxicol Pharmacol ; 136(3): 205-12, 2003 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-14659454

RESUMO

The aim of this study was to analyze the effect of the flavonoid silymarin, a free radical scavenger that prevents lipoperoxidation, on the pancreatic activity of superoxide dismutase (SOD), glutathione peroxidase (GSHPx) and catalase (CAT) in rats with alloxan-induced diabetes mellitus. Alloxan intoxicated rats were treated with silymarin in two manners, simultaneously (four or eight doses) or 20 days after alloxan administration for 9 weeks. Alloxan elicited a transient increase in the activity of the three enzymes, which decreased after 5 days of treatment. On its own, silymarin significantly increased the activity of these enzymes. Simultaneous treatment with alloxan and silymarin also induced an increment in the activity of the enzymes followed by a delayed decrease (four doses). However, a longer treatment with silymarin (eight doses) induced a more sustained effect. Interestingly, silymarin treatment recovered to control values for the activity of the three-antioxidant enzymes that were significantly diminished after 20 days of alloxan administration. It is suggested that the protective effect of silymarin on pancreatic damage induced by alloxan may be due to an increase in the activity of antioxidant enzymes that, in addition to the glutathione system, constitute the more important defense mechanisms against damage by free radicals.


Assuntos
Antioxidantes/farmacologia , Diabetes Mellitus Experimental/enzimologia , Oxirredutases/metabolismo , Pâncreas/efeitos dos fármacos , Substâncias Protetoras/farmacologia , Silimarina/farmacologia , Animais , Antioxidantes/administração & dosagem , Catalase/metabolismo , Diabetes Mellitus Experimental/patologia , Modelos Animais de Doenças , Esquema de Medicação , Quimioterapia Combinada , Glutationa Peroxidase/metabolismo , Masculino , Pâncreas/enzimologia , Pâncreas/patologia , Substâncias Protetoras/administração & dosagem , Ratos , Ratos Wistar , Silimarina/administração & dosagem , Superóxido Dismutase/metabolismo
9.
La Paz; 1994. 95 p. ilus.
Tese em Espanhol | LIBOCS, LIBOSP | ID: biblio-1310625

RESUMO

Contenido: cap.1 Marco de referencia del proyecto Cap.2 Analisis de mercado Cap.3 Ingenieria del proyecto Cap.4 Inversion y financiamiento Cap.5 Proyeccion de ingresos y costos Cap.6 Evaluacion del proyecto Cap.7 Conclusiones y recomendaciones.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...