RESUMO
During the past decade, sweet sorghum (Sorghum bicolor Moench L.) has shown great potential for bioenergy production, especially biofuels. In this study, 223 recombinant inbred lines (RILs) derived from a cross between two sweet sorghum lines (Brandes × Wray) were evaluated in three trials. Single-nucleotide polymorphisms (SNPs) derived from genotyping by sequencing of 272 RILs were used to build a high-density genetic map comprising 3,767 SNPs spanning 1,368.83 cM. Multitrait multiple interval mapping (MT-MIM) was carried out to map quantitative trait loci (QTL) for eight bioenergy traits. A total of 33 QTLs were identified for flowering time, plant height, total soluble solids and sucrose (five QTLs each), fibers (four QTLs), and fresh biomass yield, juice extraction yield, and reducing sugars (three QTLs each). QTL hotspots were found on chromosomes 1, 3, 6, 9, and 10, in addition to other QTLs detected on chromosomes 4 and 8. We observed that 14 out of the 33 mapped QTLs were found in all three trials. Upon further development and validation in other crosses, the results provided by the present study have a great potential to be used in marker-assisted selection in sorghum breeding programs for biofuel production.
Assuntos
Locos de Características Quantitativas , Sorghum , Mapeamento Cromossômico , Fenótipo , Melhoramento Vegetal , Polimorfismo de Nucleotídeo Único , Sorghum/genéticaRESUMO
The relative quantification of gene expression is mainly realized through reverse transcription-quantitative PCR (RT-qPCR). However, the accuracy of this technique is deeply influenced by the expression stability of the reference genes used for data normalization. Therefore, the selection of suitable reference genes for a given experimental condition is a prerequisite in gene expression studies. Dichelops melacanthus (Hemiptera: Pentatomidae) is an important phloem sap-sucking insect pest of soybean, wheat, and maize in Brazil. Most of the genetic and molecular biology studies require gene expression analysis. Nevertheless, there are no reports about reference genes for RT-qPCR data normalization in D. melacanthus. In this study, we evaluated the expression stability of nine candidate reference genes (nadh, sdhb, gapdh, fau, ef1a, rpl9, ube4a, gus and rps23) in different developmental stages, body parts, sex, starvation-induced stress and dsRNA exposure by RefFinder software that integrates the statistical algorithms geNorm, NormFinder, BestKeeper, and ΔCt method. Our results showed that ef1a and nadh are the most stable reference genes for developmental stages, fau and rps23 for sex, ube4a and rps23 for body parts, rpl9 and fau for starvation stress, and nadh and sdhb for dsRNA exposure treatment. The reference genes selected in this work will be useful for further RT-qPCR analyses on D. melacanthus, facilitating future gene expression studies that can provide a better understanding of the developmental, physiological, and molecular processes of this important insect pest. Moreover, the knowledge gained from these studies can be helpful to design effective and sustainable pest management strategies.