Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biofabrication ; 13(3)2021 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-32650324

RESUMO

The skin serves a substantial number of physiological purposes and is exposed to numerous biological and chemical agents owing to its large surface area and accessibility. Yet, current skin models are limited in emulating the multifaceted functions of skin tissues due to a lack of effort on the optimization of biomaterials and techniques at different skin layers for building skin frameworks. Here, we use biomaterial-based approaches and bioengineered techniques to develop a 3D skin model with layers of endothelial cell networks, dermal fibroblasts, and multilayered keratinocytes. Analysis of mechanical properties of gelatin methacryloyl (GelMA)-based bioinks mixed with different portions of alginate revealed bioprinted endothelium could be better modeled to optimize endothelial cell viability with a mixture of 7.5% GelMA and 2% alginate. Matrix stiffness plays a crucial role in modulating produced levels of Pro-Collagen I alpha-1 and matrix metalloproteinase-1 in human dermal fibroblasts and affecting their viability, proliferation, and spreading. Moreover, seeding human keratinocytes with gelatin-coating multiple times proved to be helpful in reducing culture time to create multiple layers of keratinocytes while maintaining their viability. The ability to fabricate selected biomaterials for each layer of skin tissues has implications in the biofabrication of skin systems for regenerative medicine and disease modeling.


Assuntos
Bioimpressão , Engenharia Tecidual , Células Endoteliais , Fibroblastos , Gelatina , Humanos , Hidrogéis , Queratinócitos , Metacrilatos , Impressão Tridimensional , Alicerces Teciduais
2.
Future Microbiol ; 15: 1439-1452, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33156698

RESUMO

Aim: This work aimed to develop a membrane based on voriconazole (VCZ)-loaded natural rubber latex (NRL) for treating infected ulcers with Candida spp. and study their interaction, drug release, antifungal activity against Candida parapsilosis and biological characterization. Materials & methods: VCZ-loaded NRL membrane was produced by casting method. Results: Infrared spectrum showed that the incorporation of VCZ into the NRL membrane maintained its characteristics. Its mechanical properties were considered suitable for dermal application. The VCZ was able to release from NRL membrane, maintaining its antifungal activity against C. parapsilosis, besides did not present hemolytic effects. Conclusion: The VCZ-NRL membrane showed good results in mechanical, antifungal and biological assays, representing an interesting alternative to treatment of infected wound with Candida spp.


Assuntos
Antifúngicos/farmacologia , Bandagens/microbiologia , Candida/efeitos dos fármacos , Látex/química , Úlcera Cutânea/microbiologia , Voriconazol/farmacologia , Antifúngicos/química , Fenômenos Biomecânicos , Candida/crescimento & desenvolvimento , Humanos , Testes de Sensibilidade Microbiana , Úlcera Cutânea/tratamento farmacológico , Voriconazol/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...