Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Malar J ; 18(1): 213, 2019 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-31234939

RESUMO

BACKGROUND: Malaria represents a worldwide medical emergency affecting mainly poor areas. Plasmodium parasites during blood stages can release kinins to the extracellular space after internalization of host kininogen inside erythrocytes and these released peptides could represent an important mechanism in liver pathophysiology by activation of calcium signaling pathway in endothelial cells of vertebrate host. Receptors (B1 and B2) activated by kinins peptides are important elements for the control of haemodynamics in liver and its physiology. The aim of this study was to identify changes in the liver host responses (i.e. kinin receptors expression and localization) and the effect of ACE inhibition during malaria infection using a murine model. METHODS: Balb/C mice infected by Plasmodium chabaudi were treated with captopril, an angiotensin I-converting enzyme (ACE) inhibitor, used alone or in association with the anti-malarial chloroquine in order to study the effect of ACE inhibition on mice survival and the activation of liver responses involving B1R and B2R signaling pathways. The kinin receptors (B1R and B2R) expression and localization was analysed in liver by western blotting and immunolocalization in different conditions. RESULTS: It was verified that captopril treatment caused host death during the peak of malaria infection (parasitaemia about 45%). B1R expression was stimulated in endothelial cells of sinusoids and other blood vessels of mice liver infected by P. chabaudi. At the same time, it was also demonstrated that B1R knockout mice infected presented a significant reduction of survival. However, the infection did not alter the B2R levels and localization in liver blood vessels. CONCLUSIONS: Thus, it was observed through in vivo studies that the vasodilation induced by plasma ACE inhibition increases mice mortality during P. chabaudi infection. Besides, it was also seen that the anti-malarial chloroquine causes changes in B1R expression in liver, even after days of parasite clearance. The differential expression of B1R and B2R in liver during malaria infection may have an important role in the disease pathophysiology and represents an issue for clinical treatments.


Assuntos
Regulação da Expressão Gênica , Fígado/fisiopatologia , Malária/fisiopatologia , Receptor B1 da Bradicinina/genética , Receptor B2 da Bradicinina/genética , Inibidores da Enzima Conversora de Angiotensina/farmacologia , Animais , Captopril/farmacologia , Cloroquina/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Plasmodium chabaudi , Receptor B1 da Bradicinina/metabolismo , Receptor B2 da Bradicinina/metabolismo
2.
Int J Biochem Cell Biol ; 77(Pt A): 155-164, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27270332

RESUMO

Proteolytic enzymes mediate the activation or inactivation of many physiologic and pathologic processes. The PHEX gene (Phosphate-regulating gene with homologies to endopeptidase on the X chromosome) encodes a metallopeptidase, which is mutated in patients with a prevalent form (1:20,000) of inherited rickets-X-linked hypophosphatemia (XLH). XLH shows growth retardation, hypophosphatemia, osteomalacia, and defective renal phosphate reabsorption and metabolism of vitamin D. Most PHEX studies have focused on bone, and recently we identified osteopontin (OPN) as the first protein substrate for PHEX, demonstrating in the murine model of XLH (Hyp mice) an increase in OPN that contributes to the osteomalacia. Besides its role in bone mineralization, OPN is expressed in many tissues, and therein has different functions. In tumor biology, OPN is known to be associated with metastasis. Here, we extend our PHEX-OPN studies to investigate PHEX expression in a squamous cell carcinoma (SCC) cell line and its possible involvement in modulating OPN function. Real-time PCR showed PHEX-OPN co-expression in SCC cells, with sequencing of the 22 exons showing no mutation of the PHEX gene. Although recombinant PHEX hydrolyze SCC-OPN fragments, unlike in bone cells, SCC-PHEX protein was not predominantly at the plasma membrane. Enzymatic activity assays, FACs and immunoblotting analyses demonstrated that membrane PHEX is degraded by cysteine proteases and the decreased PHEX activity could contribute to inappropriate OPN regulation. These results highlight for the first time PHEX in tumor biology.


Assuntos
Carcinoma de Células Escamosas/patologia , Regulação Neoplásica da Expressão Gênica , Osteopontina/metabolismo , Endopeptidase Neutra Reguladora de Fosfato PHEX/metabolismo , Proteólise , Membrana Celular/metabolismo , Cisteína Proteases/metabolismo , Ativação Enzimática , Humanos , Osteopontina/genética , Endopeptidase Neutra Reguladora de Fosfato PHEX/genética , Transporte Proteico , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
3.
Exp Eye Res ; 134: 39-46, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25795052

RESUMO

Corneal avascularization is essential for normal vision. Several antiangiogenic factors were identified in cornea such as endostatin and angiostatin. Cathepsin V, which is highly expressed in the cornea, can hydrolyze human plasminogen to release angiostatin fragments. Herein, we describe a detailed investigation of the expression profile of cathepsins B, L, S and V in the human cornea and the role of cysteine peptidases in modulating angiogenesis both in vitro and in vivo. We used various methodological tools for this purpose, including real-time PCR, SDS-PAGE, western blotting, catalytic activity assays, cellular assays and induction of corneal neovascularity in rabbit eyes. Human corneal enzymatic activity assays revealed the presence of cysteine proteases that were capable of processing endogenous corneal plasminogen to produce angiostatin-like fragments. Comparative real-time analysis of cathepsin B, L, S and V expression revealed that cathepsin V was the most highly expressed, followed by cathepsins L, B and S. However, cathepsin V depletion revealed that this enzyme is not the major cysteine protease responsible for plasminogen degradation under non-pathological conditions. Furthermore, western blotting analysis indicated that only cathepsins B and S were present in their enzymatically active forms. In vivo analysis of angiogenesis demonstrated that treatment with the cysteine peptidase inhibitor E64 caused a reduction in neovascularization. Taken together, our results show that human corneal cysteine proteases are critically involved in angiogenesis.


Assuntos
Catepsinas/metabolismo , Neovascularização da Córnea/enzimologia , Modelos Animais de Doenças , Animais , Western Blotting , Catepsinas/genética , Neovascularização da Córnea/patologia , Eletroforese em Gel de Poliacrilamida , Regulação da Expressão Gênica/fisiologia , Humanos , Plasminogênio/metabolismo , RNA Mensageiro/genética , Coelhos , Reação em Cadeia da Polimerase em Tempo Real , Doadores de Tecidos
4.
Periodontol 2000 ; 63(1): 102-22, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23931057

RESUMO

As broadly demonstrated for the formation of a functional skeleton, proper mineralization of periodontal alveolar bone and teeth - where calcium phosphate crystals are deposited and grow within an extracellular matrix - is essential for dental function. Mineralization defects in tooth dentin and cementum of the periodontium invariably lead to a weak (soft or brittle) dentition in which teeth become loose and prone to infection and are lost prematurely. Mineralization of the extremities of periodontal ligament fibers (Sharpey's fibers) where they insert into tooth cementum and alveolar bone is also essential for the function of the tooth-suspensory apparatus in occlusion and mastication. Molecular determinants of mineralization in these tissues include mineral ion concentrations (phosphate and calcium), pyrophosphate, small integrin-binding ligand N-linked glycoproteins and matrix vesicles. Amongst the enzymes important in regulating these mineralization determinants, two are discussed at length here, with clinical examples given, namely tissue-nonspecific alkaline phosphatase and phosphate-regulating gene with homologies to endopeptidases on the X chromosome. Inactivating mutations in these enzymes in humans and in mouse models lead to the soft bones and teeth characteristic of hypophosphatasia and X-linked hypophosphatemia, respectively, where the levels of local and systemic circulating mineralization determinants are perturbed. In X-linked hypophosphatemia, in addition to renal phosphate wasting causing low circulating phosphate levels, phosphorylated mineralization-regulating small integrin-binding ligand N-linked glycoproteins, such as matrix extracellular phosphoglycoprotein and osteopontin, and the phosphorylated peptides proteolytically released from them, such as the acidic serine- and aspartate-rich-motif peptide, may accumulate locally to impair mineralization in this disease.


Assuntos
Processo Alveolar/fisiologia , Calcificação Fisiológica/fisiologia , Proteínas do Esmalte Dentário/fisiologia , Matriz Extracelular/fisiologia , Raquitismo Hipofosfatêmico Familiar/fisiopatologia , Hipofosfatasia/fisiopatologia , Ligamento Periodontal/fisiologia , Fosfatase Alcalina/fisiologia , Processo Alveolar/enzimologia , Animais , Fosfatos de Cálcio/metabolismo , Difosfatos/metabolismo , Modelos Animais de Doenças , Endopeptidases/fisiologia , Matriz Extracelular/enzimologia , Humanos , Ligamento Periodontal/enzimologia
5.
J Bone Miner Res ; 28(3): 688-99, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22991293

RESUMO

X-linked hypophosphatemia (XLH/HYP)-with renal phosphate wasting, hypophosphatemia, osteomalacia, and tooth abscesses-is caused by mutations in the zinc-metallopeptidase PHEX gene (phosphate-regulating gene with homologies to endopeptidase on the X chromosome). PHEX is highly expressed by mineralized tissue cells. Inactivating mutations in PHEX lead to distal renal effects (implying accumulation of a secreted, circulating phosphaturic factor) and accumulation in bone and teeth of mineralization-inhibiting, acidic serine- and aspartate-rich motif (ASARM)-containing peptides, which are proteolytically derived from the mineral-binding matrix proteins of the SIBLING family (small, integrin-binding ligand N-linked glycoproteins). Although the latter observation suggests a local, direct matrix effect for PHEX, its physiologically relevant substrate protein(s) have not been identified. Here, we investigated two SIBLING proteins containing the ASARM motif-osteopontin (OPN) and bone sialoprotein (BSP)-as potential substrates for PHEX. Using cleavage assays, gel electrophoresis, and mass spectrometry, we report that OPN is a full-length protein substrate for PHEX. Degradation of OPN was essentially complete, including hydrolysis of the ASARM motif, resulting in only very small residual fragments. Western blotting of Hyp (the murine homolog of human XLH) mouse bone extracts having no PHEX activity clearly showed accumulation of an ∼35 kDa OPN fragment that was not present in wild-type mouse bone. Immunohistochemistry and immunogold labeling (electron microscopy) for OPN in Hyp bone likewise showed an accumulation of OPN and/or its fragments compared with normal wild-type bone. Incubation of Hyp mouse bone extracts with PHEX resulted in the complete degradation of these fragments. In conclusion, these results identify full-length OPN and its fragments as novel, physiologically relevant substrates for PHEX, suggesting that accumulation of mineralization-inhibiting OPN fragments may contribute to the mineralization defect seen in the osteomalacic bone characteristic of XLH/HYP.


Assuntos
Osso e Ossos/metabolismo , Raquitismo Hipofosfatêmico Familiar/metabolismo , Doenças Genéticas Ligadas ao Cromossomo X , Osteopontina/metabolismo , Endopeptidase Neutra Reguladora de Fosfato PHEX/metabolismo , Sequência de Aminoácidos , Animais , Western Blotting , Modelos Animais de Doenças , Eletroforese em Gel de Poliacrilamida , Imuno-Histoquímica , Espectrometria de Massas , Camundongos , Dados de Sequência Molecular , Osteopontina/química , Proteólise
6.
Am J Ophthalmol ; 155(4): 705-12, 712.e1, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23253911

RESUMO

PURPOSE: To investigate the in vitro effect of pH, osmolarity, solvent, and light interaction on currently used and novel dyes to minimize dye-related retinal toxicity. DESIGN: Laboratory investigation. METHODS: Retinal pigment epithelium (RPE) human cells (ARPE-19) were exposed for 10 minutes to different pH solutions (4, 5, 6, 7, 7.5, 8, and 9) and glucose solutions (2.5%, 5.0%, 10%, 20%, 40%, and 50%) with osmolarity from 142 to 2530 mOsm, with and without 0.5 mg/mL trypan blue. R28 cells were also incubated with glucose (150, 310, and 1000 mOsm) and mannitol used as an osmotic control agent in both experiments. Dye-light interaction was assessed by incubating ARPE-19 for 10 minutes with trypan blue, brilliant blue, bromophenol blue, fast green, light green, or indigo carmine (0.05 mg/mL diluted in balanced saline solution) in the presence of high-brightness xenon and mercury vapor light sources. RESULTS: Solutions with nonphysiologic pH, below 7 and above 7.5, proved to be remarkably toxic to RPE cells with or without trypan blue. Also, all glucose solutions were deleterious to RPE (P < .001) even in iso-osmolar range. No harmful effect was found with mannitol solutions. Among the dyes tested, only light green and fast green were toxic to ARPE-19 (P < .001). Light exposure did not increase RPE toxicity either with xenon light or mercury vapor lamp. CONCLUSIONS: Solutions containing glucose as a dye solvent or nonphysiologic pH should be used with care in surgical situations where the RPE is exposed. Light exposure under present assay conditions did not increase the RPE toxicity.


Assuntos
Corantes/toxicidade , Epitélio Pigmentado da Retina/efeitos dos fármacos , Acetatos/farmacologia , Sobrevivência Celular , Células Cultivadas , Combinação de Medicamentos , Solução Hipertônica de Glucose , Humanos , Concentração de Íons de Hidrogênio , Luz/efeitos adversos , Minerais/farmacologia , Concentração Osmolar , Estudos Prospectivos , Neurônios Retinianos/efeitos dos fármacos , Neurônios Retinianos/patologia , Neurônios Retinianos/efeitos da radiação , Epitélio Pigmentado da Retina/patologia , Epitélio Pigmentado da Retina/efeitos da radiação , Cloreto de Sódio/farmacologia , Azul Tripano
7.
J Endocrinol ; 214(2): 217-24, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22653842

RESUMO

Leptin is a 16  kDa hormone mainly produced by adipocytes that plays an important role in many biological events including the regulation of appetite and energy balance, atherosclerosis, osteogenesis, angiogenesis, the immune response, and inflammation. The search for proteolytic enzymes capable of processing leptin prompted us to investigate the action of cysteine cathepsins on human leptin degradation. In this study, we observed high cysteine peptidase expression and hydrolytic activity in white adipose tissue (WAT), which was capable of degrading leptin. Considering these results, we investigated whether recombinant human cysteine cathepsins B, K, L, and S were able to degrade human leptin. Mass spectrometry analysis revealed that among the tested enzymes, cathepsin S exhibited the highest catalytic activity on leptin. Furthermore, using a Matrigel assay, we observed that the leptin fragments generated by cathepsin S digestion did not exhibit angiogenic action on endothelial cells and were unable to inhibit food intake in Wistar rats after intracerebroventricular administration. Taken together, these results suggest that cysteine cathepsins may be putative leptin activity regulators in WAT.


Assuntos
Catepsinas/metabolismo , Leptina/antagonistas & inibidores , Leptina/metabolismo , Processamento de Proteína Pós-Traducional , Tecido Adiposo Branco/enzimologia , Tecido Adiposo Branco/metabolismo , Sequência de Aminoácidos , Indutores da Angiogênese/farmacologia , Animais , Domínio Catalítico , Catepsinas/fisiologia , Células Cultivadas , Cisteína Proteases/metabolismo , Cisteína Proteases/fisiologia , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/enzimologia , Células Endoteliais da Veia Umbilical Humana/metabolismo , Células Endoteliais da Veia Umbilical Humana/fisiologia , Humanos , Leptina/química , Leptina/farmacologia , Masculino , Espectrometria de Massas , Dados de Sequência Molecular , Ratos , Ratos Wistar , Proteínas Recombinantes/metabolismo
8.
Biochimie ; 93(10): 1839-45, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21784122

RESUMO

In the plasma kallikrein-kinin system, it has been shown that when plasma prekallikrein (PK) and high molecular weight kininogen (HK) assemble on endothelial cells, plasma kallikrein (huPK) becomes available to cleave HK, releasing bradykinin, a potent mediator of the inflammatory response. Because the formation of soluble glycosaminoglycans occurs concomitantly during the inflammatory processes, the effect of these polysaccharides on the interaction of HK on the cell surface or extracellular matrix (ECM) of two endothelial cell lines (ECV304 and RAEC) was investigated. In the presence of Zn(+2), HK binding to the surface or ECM of RAEC was abolished by heparin; reduced by heparan sulfate, keratan sulfate, chondroitin 4-sulfate or dermatan sulfate; and not affected by chondroitin 6-sulfate. By contrast, only heparin reduced HK binding to the ECV304 cell surface or ECM. Using heparin-correlated molecules such as low molecular weight dextran sulfate, low molecular weight heparin and N-desulfated heparin, we suggest that these effects were mainly dependent on the charge density and on the N-sulfated glucosamine present in heparin. Surprisingly, PK binding to cell- or ECM-bound-HK and PK activation was not modified by heparin. However, the hydrolysis of HK by huPK, releasing BK in the fluid phase, was augmented by this glycosaminoglycan in the presence of Zn(2+). Thus, a functional dichotomy exists in which soluble glycosaminoglycans may possibly either increase or decrease the formation of BK. In conclusion, glycosaminoglycans that accumulated in inflammatory fluids or used as a therapeutic drug (e.g., heparin) could act as pro- or anti-inflammatory mediators depending on different factors within the cell environment.


Assuntos
Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Heparina/farmacologia , Pré-Calicreína/metabolismo , Biotinilação/efeitos dos fármacos , Linhagem Celular , Matriz Extracelular/metabolismo , Glicosaminoglicanos/farmacologia , Humanos , Cininogênios , Ligação Proteica/efeitos dos fármacos
9.
Vet Parasitol ; 181(2-4): 291-300, 2011 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-21536386

RESUMO

The tick Rhipicephalus (Boophilus) microplus is one of the most important bovine ectoparasites, a disease vector responsible for losses in meat and milk productions. A cysteine protease similar to cathepsin L, named BmCL1, was previously identified in R. microplus gut, suggesting a role of the enzyme in meal digestion. In this work, BmCL1 was successfully expressed in Pichia pastoris system, yielding 54.8 mg/L of culture and its activity was analyzed by synthetic substrates and against a R. microplus cysteine protease inhibitor, Bmcystatin. After rBmCl1 biochemical characterization it was used in a selection of a peptide phage library to determine rBmCL1 substrate preference. Obtained sequenced clones showed that rBmCL1 has preference for Leu or Arg at P(1) position. The preference for Leu at position P(1) and the activation of BmCL1 after a Leu amino acid residue suggest possible self activation.


Assuntos
Cisteína Proteases/metabolismo , Rhipicephalus/enzimologia , Sequência de Aminoácidos , Animais , Clonagem Molecular , Cisteína Proteases/genética , Regulação da Expressão Gênica , Dados de Sequência Molecular , Biblioteca de Peptídeos , Reação em Cadeia da Polimerase , Rhipicephalus/genética , Especificidade por Substrato
10.
Biol Chem ; 391(5): 561-70, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20302511

RESUMO

Plasminogen is a glycoprotein implicated in angiogenesis and fibrin clot degradation associated with the release of angiostatin and plasmin activation, respectively. We have recently reported that cathepsin V, but not cathepsins L, B, and K, can release angiostatin-like fragments from plasminogen. Here, we extended the investigation to cathepsin S which has been implicated in angiogenesis and tumor cell proliferation. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis of plasminogen hydrolysis by cathepsin S revealed generation of two fragments (60 and 38 kDa). Amino-terminal sequencing indicated that cleavage occurs at the Leu469-Leu470 peptide bond. In contrast to cathepsin V, which possesses antiangiogenic activity, cathepsin S plasminogen cleavage products were not capable of inhibiting angiogenesis on endothelial cells. Moreover, we explored the different selectivities presented by cathepsins V and S towards plasminogen and synthesized fluorescence resonance energy transfer peptides encompassing the hydrolyzed peptide bonds by both enzymes. The peptide Abz-VLFEKKQ-EDDnp (Abz=ortho-aminobenzoic acid; EDDnp= N-[2,4-dinitrophenyl]ethylenediamine), hydrolyzed by cath-epsin V at the Phe-Glu bond, is a selective substrate for the enzyme when compared with cathepsins B, L, and S, whereas Abz-VLFEKKVYLQ-EDDnp is an efficient cathepsin L inhibitor. The demonstrated importance of the S(3)'-P(3)' interaction indicates the significance of the extended subsites for enzyme specificity and affinity.


Assuntos
Catepsina L/antagonistas & inibidores , Catepsinas/metabolismo , Cisteína Endopeptidases/metabolismo , Fragmentos de Peptídeos/metabolismo , Plasminogênio/metabolismo , Sequência de Aminoácidos , Humanos , Hidrólise , Fragmentos de Peptídeos/farmacologia , Proteínas Recombinantes/metabolismo , Especificidade por Substrato
11.
Peptides ; 31(4): 562-7, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20045715

RESUMO

Cathepsin S is a lysosomal cysteine peptidase of the papain superfamily which is implicated in physiological and pathological states. The enzyme is highly expressed in antigen presenting cells and is thought to play an important role in the processing of the major histocompatibility complex (MHC) class II-associated invariant chain. In pathological processes, cathepsin S is associated with Alzheimer's disease, atherosclerosis and obesity and can be regarded as a potential target in related disorders. However, due to the broad substrate specificities of the lysosomal cathepsins, the specific detection of cathepsin S is difficult when other cathepsins are present. In an attempt to distinguish cathepsin S from other cathepsins we synthesized and tested fluorescence resonance energy transfer (FRET) peptides derived from two of its putative natural substrates, namely insulin beta-chain and class II-associated invariant chain (CLIP). The influence of ionic strength on the catalytic activity and the enzyme stability in neutral pH was also analyzed. Using data gathered from our study we developed a selective substrate for cathepsin S and establish the assay conditions to differentiate the enzyme from cathepsins L, B, V and K. The peptide Abz-LEQ-EDDnp (Abz=ortho-aminobenzoic acid; EDDnp=N-[2,4-dinitrophenyl]ethylenediamine]) in 50mM sodium phosphate buffer, pH 7.4, containing 1M NaCl was hydrolyzed by cathepsin S with k(cat)/K(m) value of 3585mM(-1)s(-1), and was resistant to hydrolysis by cathepsins L, V, K and B. Thus, we developed a sensitive and selective cathepsins S substrate that permits continuous measurement of the enzymatic activity even in crude tissue extracts.


Assuntos
Catepsinas/química , Transferência Ressonante de Energia de Fluorescência/métodos , Peptídeos/química , Animais , Antígenos de Diferenciação de Linfócitos B/genética , Antígenos de Diferenciação de Linfócitos B/metabolismo , Catepsina K/química , Catepsina K/genética , Catepsina K/metabolismo , Catepsinas/genética , Catepsinas/metabolismo , Cisteína Endopeptidases/química , Cisteína Endopeptidases/genética , Cisteína Endopeptidases/metabolismo , Antígenos de Histocompatibilidade Classe II/genética , Antígenos de Histocompatibilidade Classe II/metabolismo , Humanos , Concentração de Íons de Hidrogênio , Masculino , Concentração Osmolar , Peptídeos/genética , Ratos , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Especificidade por Substrato , Extratos de Tecidos/química
12.
Int J Biochem Cell Biol ; 40(12): 2781-92, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18585473

RESUMO

The PHEX gene (phosphate-regulating gene with homologies to endopeptidase on the X chromosome) identified as a mutated gene in patients with X-linked hypophosphatemia (XLH), encodes a protein (PHEX) that shows striking homologies to members of the M13 family of zinc metallopeptidases. In the present work the interaction of glycosaminoglycans with PHEX has been investigated by affinity chromatography, circular dichroism, protein intrinsic fluorescence analysis, hydrolysis of FRET substrates flow cytometry and confocal microscopy. PHEX was eluted from a heparin-Sepharose chromatography column at 0.8 M NaCl showing a strong interaction with heparin. Circular dichroism spectra and intrinsic fluorescence analysis showed that PHEX is protected by glycosaminoglycans against thermal denaturation. Heparin, heparan sulfate and chondroitin sulfate inhibited PHEX catalytic activity, however among them, heparin presented the highest inhibitory activity (Ki=2.5+/-0.2 nM). Flow cytometry analysis showed that PHEX conjugated to Alexa Fluor 488 binds to the cell surface of CHO-K1, but did not bind to glycosaminoglycans defective cells CHO-745. Endogenous PHEX was detected at the cell surface of CHO-K1 colocalized with heparan sulfate proteoglycans, but was not found at the cell surface of glycosaminoglycans defective cells CHO-745. In permeabilized cells, PHEX was detected in endoplasmic reticulum of both cells. In addition, we observed that PHEX colocalizes with heparan sulfate at the cell surface of osteoblasts. This is the first report that the metallopeptidase PHEX is a heparin binding protein and that the interaction with GAGs modulates its enzymatic activity, protein stability and cellular trafficking.


Assuntos
Proteoglicanas de Heparan Sulfato/metabolismo , Metaloproteases/metabolismo , Proteínas/metabolismo , Animais , Células CHO , Cromatografia de Afinidade , Dicroísmo Circular , Cricetinae , Cricetulus , Transferência Ressonante de Energia de Fluorescência , Heparina/metabolismo , Heparina/farmacologia , Heparitina Sulfato/metabolismo , Heparitina Sulfato/fisiologia , Hidrólise , Ligação Proteica , Proteínas/genética , Proteoglicanas/metabolismo , Proteoglicanas/fisiologia , Proteínas Recombinantes/metabolismo , Especificidade por Substrato
13.
Biol Chem ; 389(2): 195-200, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18163891

RESUMO

Abstract Cathepsin V is a lysosomal cysteine peptidase highly expressed in corneal epithelium; however, its function in the eye is still unknown. Here, we describe the capability of cathepsin V to hydrolyze plasminogen, which is also expressed in human cornea at levels high enough to produce physiologically relevant amounts of angiostatin-related molecules. The co-localization of these two proteins suggests an important role for the enzyme in the maintenance of corneal avascularity, essential for optimal visual performance. Sodium dodecyl sulfate-polyacrylamide gel electrophoretic analysis of plasminogen digestion by cathepsin V revealed the generation of three major products of 60, 50 and 40 kDa, which were electrotransferred to polyvinylidene difluoride membranes and excised for characterization. NH(2)-terminal amino acid sequencing of these fragments revealed the sequences EKKVYL, TEQLAP and LLPNVE, respectively. These data are compatible with cleavage sites at plasminogen F94-E95, S358-T359 and V468-L469 peptide bonds generating fragments of the five-kringle domains. In contrast, we did not detect any plasminogen degradation by cathepsins B, K and L. Using a Matrigel assay, we confirmed the angiogenesis inhibition activity on endothelial cells caused by plasminogen processing by cathepsin V. Our results suggest a novel physiological role for cathepsin V related to the control of neovascularization in cornea.


Assuntos
Inibidores da Angiogênese , Catepsinas/metabolismo , Fragmentos de Peptídeos/análise , Angiostatinas , Catepsina B/metabolismo , Catepsina K , Catepsina L , Córnea/irrigação sanguínea , Cisteína Endopeptidases/metabolismo , Células Endoteliais/efeitos dos fármacos , Epitélio Corneano/efeitos dos fármacos , Humanos , Neovascularização Patológica/tratamento farmacológico , Plasminogênio/metabolismo
14.
Biol Chem ; 388(4): 447-55, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17391066

RESUMO

We examined the substrate specificity of the carboxydipeptidase activity of neprilysin (NEP) using fluorescence resonance energy transfer (FRET) peptides containing ortho-aminobenzoyl (Abz) and 2,4-dinitrophenyl (Dnp) as a donor/acceptor pair. Two peptide series with general sequences Abz-RXFK(Dnp)-OH and Abz-XRFK(Dnp)-OH (X denotes the position of the altered amino acid) were synthesized to study P1 (cleavage at the X-F bond) and P2 (cleavage at R-F bond) specificity, respectively. In these peptides a Phe residue was fixed in P1' to fulfill the well-known NEP S1' site requirement for a hydrophobic amino acid. In addition, we explored NEP capability to hydrolyze bradykinin (RPPGFSPFR) and its fluorescent derivative Abz-RPPGFSPFRQ-EDDnp (EDDnp=2,4-dinitrophenyl ethylenediamine). The enzyme acts upon bradykinin mainly as a carboxydipeptidase, preferentially cleaving Pro-Phe over the Gly-Phe bond in a 9:1 ratio, whereas Abz-RPPGFSPFRQ-EDDnp was hydrolyzed at the same bonds but at an inverted proportion of 1:9. The results show very efficient interaction of the substrates' C-terminal free carboxyl group with site S2' of NEP, confirming the enzyme's preference to act as carboxydipeptidase at substrates with a free carboxyl-terminus. Using data gathered from our study, we developed sensitive and selective NEP substrates that permit continuous measurement of the enzyme activity, even in crude tissue extracts.


Assuntos
Neprilisina/metabolismo , 2,4-Dinitrofenol/metabolismo , Animais , Bradicinina/metabolismo , Transferência Ressonante de Energia de Fluorescência , Concentração de Íons de Hidrogênio , Rim/enzimologia , Pulmão/enzimologia , Masculino , Metiltransferases , Oligopeptídeos/metabolismo , Ratos , Cloreto de Sódio/farmacologia , Especificidade por Substrato , ortoaminobenzoatos/metabolismo
15.
Biol Chem ; 386(7): 699-704, 2005 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16207091

RESUMO

We investigated the ability of cathepsin L to induce a hypotensive effect after intravenous injection in rats and correlated this decrease in blood pressure with kinin generation. Simultaneously with blood pressure decrease, we detected plasma kininogen depletion in the treated rats. The effect observed in vivo was abolished by pre-incubation of cathepsin L with the cysteine peptidase-specific inhibitor E-64 (1 microM) or by previous administration of the bradykinin B2 receptor antagonist JE049 (4 mg/kg). A potentiation of the hypotensive effect caused by cathepsin L was observed by previous administration of the angiotensin I-converting enzyme inhibitor captopril (5 mg/kg). In vitro studies indicated that cathepsin L excised bradykinin from the synthetic fluorogenic peptide Abz-MTSVIRRPPGFSPFRAPRV-NH2, based on the Met375-Val393 sequence of rat kininogen (Abz = o-aminobenzoic acid). In conclusion, our data indicate that in vivo cathepsin L releases a kinin-related peptide, and in vitro experiments suggest that the kinin generated is bradykinin. Although it is well known that cysteine proteases are strongly inhibited by kininogen, cathepsin L could represent an alternative pathway for kinin production in pathological processes.


Assuntos
Catepsinas/metabolismo , Cisteína Endopeptidases/metabolismo , Cininas/metabolismo , Sequência de Aminoácidos , Animais , Anti-Hipertensivos/farmacologia , Bradicinina/análogos & derivados , Bradicinina/farmacologia , Captopril/farmacologia , Catepsina L , Catepsinas/química , Cisteína Endopeptidases/química , Hidrólise , Dados de Sequência Molecular , Ratos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
16.
Arch Biochem Biophys ; 435(1): 190-6, 2005 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-15680921

RESUMO

Cathepsin P is a recently discovered placental cysteine protease that is structurally related to the more ubiquitously expressed, broad-specificity enzyme, cathepsin L. We studied the substrate specificity requirements of recombinant mouse cathepsin P using fluorescence resonance energy transfer (FRET) peptides derived from the lead sequence Abz-KLRSSKQ-EDDnp (Abz, ortho-aminobenzoic acid and EDDnp, N-[2,4-dinitrophenyl]ethylenediamine). Systematic modifications were introduced resulting in five series of peptides to map the S(3) to S(2)(') subsites of the enzyme. The results indicate that the subsites S(1), S(2), S(1)('), and S(2)('), present a clear preference for hydrophobic residues. The specificity requirements of the S(2) subsite were found to be more restricted, preferring hydrophobic aliphatic amino acids. The S(3) subsite of the enzyme presents a broad specificity, accepting negatively charged (Glu), positively charged (Lys, Arg), and hydrophobic aliphatic or aromatic residues (Val, Phe). For several substrates, the activity of cathepsin P was markedly regulated by kosmotropic salts, particularly Na(2)SO(4). No significant effect on secondary or tertiary structure could be detected by either circular dichroism or size exclusion chromatography, indicating that the salts most probably disrupt unfavorable ionic interactions between the substrate and enzyme active site. A substrate based upon the preferred P(3) to P(2)(') defined by the screening study, ortho-aminobenzoic-Glu-Ile-Phe-Val-Phe-Lys-Gln-N-(2,4-dinitrophenyl)ethylenediamine (cleaved at the Phe-Val bond) was efficiently hydrolyzed in the absence of high salt. The k(cat)/K(m) for this substrate was almost two orders of magnitude higher than that of the original parent compound. These results show that cathepsin P, in contrast to other mammalian cathepsins, has a restricted catalytic specificity.


Assuntos
Catepsinas/química , Peptídeos/química , Proteínas da Gravidez/química , Animais , Sítios de Ligação , Catálise , Catepsina K , Catepsinas/análise , Ativação Enzimática , Humanos , Concentração de Íons de Hidrogênio , Hidrólise , Cinética , Camundongos , Ligação Proteica , Conformação Proteica , Relação Estrutura-Atividade , Especificidade por Substrato
17.
Biol Chem ; 385(11): 1087-91, 2004 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-15576330

RESUMO

Plasma kallikrein plays a role in coagulation, fibrinolysis and inflammation. Cathepsins B and L participate in (patho)physiological processes such as peptide antigen processing, tissue remodeling events, protein turnover in cells, hormone processing and tumor invasion. The present work analyzes the processing of prekallikrein/kallikrein by lysosomal cathepsins. Prekallikrein is not hydrolyzed by catB, and catL generates an inactive fragment of prekallikrein. Both kallikrein chains are hydrolyzed by catL and the light chain is mainly hydrolyzed by catB; kallikrein activity is lower after incubation with catL compared to catB. Our data suggest that the plasma kallikrein/ kinin system can be controlled by cathepsins.


Assuntos
Catepsinas/metabolismo , Calicreínas/sangue , Lisossomos/enzimologia , Pré-Calicreína/metabolismo , Eletroforese em Gel de Poliacrilamida , Hidrólise
18.
Biol Chem ; 385(6): 551-5, 2004 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15255189

RESUMO

We investigated the influence of pH and divalent cations (Zn2+, Mg2+ and Ca2+) on high molecular weight kininogen processing by cathepsin B. At pH 6.3, high molecular weight kininogen is hydrolyzed by cathepsin B at three sites generating fragments of 80, 60 and 40 kDa. Cathepsin B has kininogenase activity at this pH which is improved in the absence of divalent cations. At pH 7.35, high molecular weight kininogen is slightly cleaved by cathepsin B into fragments of 60 kDa, and cathepsin B kininogenase activity is impaired. Our results suggest that high molecular weight kininogen is a substrate for cathepsin B under pathophysiological conditions.


Assuntos
Catepsina B/química , Cininogênios/química , Catepsina B/metabolismo , Cátions/farmacologia , Eletroforese em Gel de Poliacrilamida , Humanos , Concentração de Íons de Hidrogênio , Hidrólise , Calicreínas/metabolismo , Cininogênios/efeitos dos fármacos , Cininogênios/metabolismo , Peso Molecular , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...