Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Soc Mass Spectrom ; 33(12): 2203-2214, 2022 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-36371691

RESUMO

Ultrahigh resolution mass spectrometry (UHR-MS) coupled with direct infusion (DI) electrospray ionization offers a fast solution for accurate untargeted profiling. Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometers have been shown to produce a wealth of insights into complex chemical systems because they enable unambiguous molecular formula assignment even if the vast majority of signals is of unknown identity. Interlaboratory comparisons are required to apply this type of instrumentation in quality control (for food industry or pharmaceuticals), large-scale environmental studies, or clinical diagnostics. Extended comparisons employing different FT-ICR MS instruments with qualitative direct infusion analysis are scarce since the majority of detected compounds cannot be quantified. The extent to which observations can be reproduced by different laboratories remains unknown. We set up a preliminary study which encompassed a set of 17 laboratories around the globe, diverse in instrumental characteristics and applications, to analyze the same sets of extracts from commercially available standard human blood plasma and Standard Reference Material (SRM) for blood plasma (SRM1950), which were delivered at different dilutions or spiked with different concentrations of pesticides. The aim of this study was to assess the extent to which the outputs of differently tuned FT-ICR mass spectrometers, with different technical specifications, are comparable for setting the frames of a future DI-FT-ICR MS ring trial. We concluded that a cluster of five laboratories, with diverse instrumental characteristics, showed comparable and representative performance across all experiments, setting a reference to be used in a future ring trial on blood plasma.

4.
Metabolomics ; 17(3): 25, 2021 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-33594638

RESUMO

INTRODUCTION: Lipidomic profiling allows 100s if not 1000s of lipids in a sample to be detected and quantified. Modern lipidomics techniques are ultra-sensitive assays that enable the discovery of novel biomarkers in a variety of fields and provide new insight in mechanistic investigations. Despite much progress in lipidomics, there remains, as for all high throughput "omics" strategies, the need to develop strategies to standardize and integrate quality control into studies in order to enhance robustness, reproducibility, and usability of studies within specific fields and beyond. OBJECTIVES: We aimed to understand how much results from lipid profiling in the model organism Caenorhabditis elegans are influenced by different culture conditions in different laboratories. METHODS: In this work we have undertaken an inter-laboratory study, comparing the lipid profiles of N2 wild type C. elegans and daf-2(e1370) mutants lacking a functional insulin receptor. Sample were collected from worms grown in four separate laboratories under standardized growth conditions. We used an UPLC-UHR-ToF-MS system allowing chromatographic separation before MS analysis. RESULTS: We found common qualitative changes in several marker lipids in samples from the individual laboratories. On the other hand, even in this controlled experimental system, the exact fold-changes for each marker varied between laboratories. CONCLUSION: Our results thus reveal a serious limitation to the reproducibility of current lipid profiling experiments and reveal challenges to the integration of such data from different laboratories.


Assuntos
Caenorhabditis elegans/química , Caenorhabditis elegans/metabolismo , Lipidômica/métodos , Lipídeos/análise , Animais , Antígenos CD , Biomarcadores , Laboratórios , Receptor de Insulina , Reprodutibilidade dos Testes
5.
J Proteome Res ; 20(1): 463-473, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33054244

RESUMO

Metabolomics-the endpoint of the omics cascade-is increasingly recognized as a preferred method for understanding the ultimate responses of biological systems to stress. Flow injection electrospray (FIE) mass spectrometry (MS) has advantages for untargeted metabolic fingerprinting due to its simplicity and capability for high-throughput screening but requires a high-resolution mass spectrometer to resolve metabolite features. In this study, we developed and validated a high-throughput and highly reproducible metabolomics platform integrating FIE with ultrahigh-resolution Fourier transform ion cyclotron resonance (FTICR) MS for analysis of both polar and nonpolar metabolite features from plasma samples. FIE-FTICR MS enables high-throughput detection of hundreds of metabolite features in a single mass spectrum without a front-end separation step. Using plasma samples from genetically identical obese mice with or without type 2 diabetes (T2D), we validated the intra and intersample reproducibility of our method and its robustness for simultaneously detecting alterations in both polar and nonpolar metabolite features. Only 5 min is needed to acquire an ultra-high resolution mass spectrum in either a positive or negative ionization mode. Approximately 1000 metabolic features were reproducibly detected and annotated in each mouse plasma group. For significantly altered and highly abundant metabolite features, targeted tandem MS (MS/MS) analyses can be applied to confirm their identity. With this integrated platform, we successfully detected over 300 statistically significant metabolic features in T2D mouse plasma as compared to controls and identified new T2D biomarker candidates. This FIE-FTICR MS-based method is of high throughput and highly reproducible with great promise for metabolomics studies toward a better understanding and diagnosis of human diseases.


Assuntos
Diabetes Mellitus Tipo 2 , Espectrometria de Massas em Tandem , Animais , Metabolômica , Camundongos , Plasma , Reprodutibilidade dos Testes
6.
Front Public Health ; 8: 558226, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33102421

RESUMO

Edible vegetable oils comprise integral components of humans' daily diet during the lifetime. Therefore, they constitute a central part of dietary-exposome, which among other factors regulates human health. In particular, the regular consumption of olive oil (OO) has been largely accepted as a healthy dietary pattern. Responsible for its recognition as a superior edible oil is its exceptional aroma and flavor. Its unique composition is characterized by high levels of monounsaturated fatty acids and the presence of minor constituents with important biological properties, such as the so-called OO polyphenols. Being a high added value product, OO suffers from extensive fraud and adulteration phenomena. However, its great chemical complexity, variability, and the plethora of parameters affecting OO composition hamper significantly the selection of the absolute criteria defining quality and authenticity, and a reliable and robust methodology is still unavailable. In the current study, Flow Injection Analysis-Magnetic Resonance Mass Spectrometry (FIA-MRMS) was investigated under a metabolic profiling concept for the analysis of Greek Extra Virgin Olive Oils (EVOO). More than 200 monovarietal (Koroneiki) EVOO samples were collected from the main Greek OO producing regions and investigated. Both intact oil and the corresponding polyphenols were analyzed in fast analysis time of 2 and 8 min, respectively. In parallel, an LC-Orbitrap MS platform was used to verify the efficiency of the method as well as a tool to increase the identification confidence of the proposed markers. Based on the results, with FIA-MRMS, comparable and improved projection and prediction models were generated in comparison to those of the more established LC-MS methodology. With FIA-MRMS more statistically significant compounds and chemical classes were identified as quality and authenticity markers, associated with specific parameters, i.e. geographical region, cultivation practice, and production procedure. Furthermore, it was possible to monitor both lipophilic and hydrophilic compounds with a single analysis. To our knowledge, this approach is among the few studies in which two FT-MS platforms combining LC and FIA methods were integrated to provide solutions to quality control aspects of OO. Moreover, both lipophilic and hydrophilic components are analyzed together, providing a holistic quality control workflow for OO.


Assuntos
Análise de Injeção de Fluxo , Cromatografia Líquida , Grécia , Humanos , Espectrometria de Massas , Azeite de Oliva/análise
7.
Nat Methods ; 17(9): 905-908, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32839597

RESUMO

Molecular networking has become a key method to visualize and annotate the chemical space in non-targeted mass spectrometry data. We present feature-based molecular networking (FBMN) as an analysis method in the Global Natural Products Social Molecular Networking (GNPS) infrastructure that builds on chromatographic feature detection and alignment tools. FBMN enables quantitative analysis and resolution of isomers, including from ion mobility spectrometry.


Assuntos
Produtos Biológicos/química , Espectrometria de Massas , Biologia Computacional/métodos , Bases de Dados Factuais , Metabolômica/métodos , Software
8.
Nat Commun ; 11(1): 331, 2020 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-31949144

RESUMO

A comprehensive characterization of the lipidome from limited starting material remains very challenging. Here we report a high-sensitivity lipidomics workflow based on nanoflow liquid chromatography and trapped ion mobility spectrometry (TIMS). Taking advantage of parallel accumulation-serial fragmentation (PASEF), we fragment on average 15 precursors in each of 100 ms TIMS scans, while maintaining the full mobility resolution of co-eluting isomers. The acquisition speed of over 100 Hz allows us to obtain MS/MS spectra of the vast majority of isotope patterns. Analyzing 1 µL of human plasma, PASEF increases the number of identified lipids more than three times over standard TIMS-MS/MS, achieving attomole sensitivity. Building on high intra- and inter-laboratory precision and accuracy of TIMS collisional cross sections (CCS), we compile 1856 lipid CCS values from plasma, liver and cancer cells. Our study establishes PASEF in lipid analysis and paves the way for sensitive, ion mobility-enhanced lipidomics in four dimensions.


Assuntos
Espectrometria de Mobilidade Iônica , Lipidômica/métodos , Lipídeos/sangue , Animais , Cromatografia Líquida , Análise de Dados , Humanos , Isomerismo , Isótopos , Camundongos , Espectrometria de Massas em Tandem , Fluxo de Trabalho
9.
Metabolites ; 10(1)2019 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-31878231

RESUMO

The utility of metabolomics is well documented; however, its full scientific promise has not yet been realized due to multiple technical challenges. These grand challenges include accurate chemical identification of all observable metabolites and the limiting depth-of-coverage of current metabolomics methods. Here, we report a combinatorial solution to aid in both grand challenges using UHPLC-trapped ion mobility spectrometry coupled to tandem mass spectrometry (UHPLC-TIMS-TOF-MS). TIMS offers additional depth-of-coverage through increased peak capacities realized with the multi-dimensional UHPLC-TIMS separations. Metabolite identification confidence is simultaneously enhanced by incorporating orthogonal collision cross section (CCS) data matching. To facilitate metabolite identifications, we created a CCS library of 146 plant natural products. This library was generated using TIMS with N2 drift gas to record the TIMSCCSN2 of plant natural products with a high degree of reproducibility; i.e., average RSD = 0.10%. The robustness of TIMSCCSN2 data matching was tested using authentic standards spiked into complex plant extracts, and the precision of CCS measurements were determined to be independent of matrix affects. The utility of the UHPLC-TIMS-TOF-MS/MS in metabolomics was then demonstrated using extracts from the model legume Medicago truncatula and metabolites were confidently identified based on retention time, accurate mass, molecular formula, and CCS.

10.
Front Plant Sci ; 8: 1650, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29018463

RESUMO

The redox imbalanced 6 mutant (rimb6) of Arabidopsis thaliana was isolated in a genetic screening approach for mutants with defects in chloroplast-to-nucleus redox signaling. It has an atypically low activation status of the 2-Cys peroxiredoxin-A promoter in the seedling stage. rimb6 shows wildtype-like germination, seedling development and greening, but slower growth and reduced biomass in the rosette stage. Mapping of the casual mutation revealed that rimb6 carries a single nucleotide polymorphism in the gene encoding CONSTITUTIVE EXPRESSER OF PATHOGENESIS RELATED (PR) GENES 1, CPR1 (At4g12560), leading to a premature stop codon. CPR1 is known as a repressor of pathogen signaling and regulator of microtubule organization. Allelism of rimb6 and cpr1 revealed a function of CPR1 in chloroplast stress protection. Expression studies in pathogen signaling mutants demonstrated that CPR1-mediated activation of genes for photosynthesis and chloroplast antioxidant protection is, in contrast to activation of pathogen responses, regulated independently from PAD4-controlled salicylic acid (SA) accumulation. We conclude that the support of plastid function is a basic, SA-independent function of CPR1.

11.
Arch Physiol Biochem ; 122(5): 266-280, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27373781

RESUMO

Offspring of type 2 diabetes (T2D) patients have increased risk to develop diabetes, due to inherited genetic susceptibility that directly interferes with the individual adaption to environmental conditions. We characterise T2D offspring (OSP) to identify metabolic risk markers for early disease prediction. Plasma of metabolically healthy OSP individuals (n = 43) was investigated after an oral lipid tolerance test (oLTT) by an untargeted mass spectrometric approach for holistic metabolome analyses. Two subgroups of OSP probands can be separated by oLTT, although not differing in general clinical parameters. Analyses of the plasma metabolome revealed mainly medium-chain acylcarnitines and very long-chain fatty acids with differential abundance in the subgroups. The study presented indicates that metabolically healthy OSP of T2D patients differ upon metabolic challenging in serum metabolite composition, especially medium-chain acylcarnitines. The difference suggest that postprandial lipid induced glucose intolerance (LGIT) may serve as a further valuable marker for early diabetes prediction.


Assuntos
Biomarcadores/metabolismo , Glicemia/metabolismo , Carnitina/análogos & derivados , Diabetes Mellitus Tipo 2/complicações , Intolerância à Glucose/diagnóstico , Lipídeos/efeitos adversos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Adolescente , Adulto , Idoso , Carnitina/metabolismo , Estudos de Casos e Controles , Cromatografia Líquida , Diabetes Mellitus Tipo 2/fisiopatologia , Feminino , Intolerância à Glucose/etiologia , Intolerância à Glucose/metabolismo , Teste de Tolerância a Glucose , Humanos , Masculino , Espectrometria de Massas , Metaboloma , Pessoa de Meia-Idade , Adulto Jovem
12.
Plant J ; 85(4): 561-77, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26749139

RESUMO

Exploring the diversity of plant secondary metabolism requires efficient methods to obtain sufficient structural insights to discriminate previously known from unknown metabolites. De novo structure elucidation and confirmation of known metabolites (dereplication) remain a major bottleneck for mass spectrometry-based metabolomic workflows, and few systematic dereplication strategies have been developed for the analysis of entire compound classes across plant families, partly due to the complexity of plant metabolic profiles that complicates cross-species comparisons. 17-hydroxygeranyllinalool diterpene glycosides (HGL-DTGs) are abundant defensive secondary metabolites whose malonyl and glycosyl decorations are induced by jasmonate signaling in the ecological model plant Nicotiana attenuata. The multiple labile glycosidic bonds of HGL-DTGs result in extensive in-source fragmentation (IS-CID) during ionization. To reconstruct these IS-CID clusters from profiling data and identify precursor ions, we applied a deconvolution algorithm and created an MS/MS library from positive-ion spectra of purified HGL-DTGs. From this library, 251 non-redundant fragments were annotated, and a workflow to characterize leaf, flower and fruit extracts of 35 solanaceous species was established. These analyses predicted 105 novel HGL-DTGs that were restricted to Nicotiana, Capsicum and Lycium species. Interestingly, malonylation is a highly conserved step in HGL-DTG metabolism, but is differentially affected by jasmonate signaling among Nicotiana species. This MS-based workflow is readily applicable for cross-species re-identification/annotation of other compound classes with sufficient fragmentation knowledge, and therefore has the potential to support hypotheses regarding secondary metabolism diversification.


Assuntos
Diterpenos/química , Glicosídeos/química , Metabolômica/métodos , Solanaceae/química , Espectrometria de Massas em Tandem/métodos , Capsicum/química , Capsicum/metabolismo , Ciclopentanos/metabolismo , Diterpenos/classificação , Diterpenos/isolamento & purificação , Glicosídeos/classificação , Glicosídeos/isolamento & purificação , Lycium/química , Lycium/metabolismo , Oxilipinas/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Folhas de Planta/química , Folhas de Planta/metabolismo , Transdução de Sinais , Solanaceae/metabolismo , Especificidade da Espécie , Nicotiana/química , Nicotiana/metabolismo
13.
Artigo em Inglês | MEDLINE | ID: mdl-24004912

RESUMO

We report a method of ion-pairing liquid chromatography coupled to mass spectrometry (IP-LC-MS) that we have developed for the sensitive detection and quantification of a variety of biologically relevant polar molecules. We use the ion-pairing agent diamyl ammonium to improve chromatographic resolution of polar compounds, such as nucleotide cofactors, sugar phosphates, and organic acids, that are generally poorly retained by conventional reverse phase chromatographic methods. This method showed good linearity (average R value of 0.996) and reproducibility (generally RSD values <10%). We demonstrate the utility of this method by investigating the metabolomic signature of three distinct biological systems: the metabolic response to lack of superoxide dismutase activity and to paraquat induced oxidative stress, and the metabolic profiles of four different Drosophila species.


Assuntos
Cromatografia Líquida/métodos , Espectrometria de Massas/métodos , Metabolômica/métodos , Acetatos , Animais , Drosophila/química , Feminino , Interações Hidrofóbicas e Hidrofílicas , Limite de Detecção , Modelos Lineares , Masculino , Metaboloma , Modelos Químicos , Reprodutibilidade dos Testes
14.
Microbiology (Reading) ; 158(Pt 8): 2060-2072, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22653947

RESUMO

The application of toxic triphenylmethane dyes such as crystal violet (CV) in various industrial processes leads to large amounts of dye-contaminated sludges that need to be detoxified. Specific bacteria residing in wastewater treatment plants (WWTPs) are able to degrade triphenylmethane dyes. The objective of this work was to gain insights into the genetic background of bacterial strains capable of CV degradation. Three bacterial strains isolated from a municipal WWTP harboured IncP-1ß plasmids mediating resistance to and decolorization of CV. These isolates were assigned to the genera Comamonas and Delftia. The CV-resistance plasmid pKV29 from Delftia sp. KV29 was completely sequenced. In addition, nucleotide sequences of the accessory regions involved in conferring CV resistance were determined for plasmids pKV11 and pKV36 from the other two isolates. Plasmid pKV29 contains typical IncP-1ß backbone modules that are highly similar to those of previously sequenced IncP-1ß plasmids that confer antibiotic resistance, degradative capabilities or mercury resistance. The accessory regions located between the conjugative transfer (tra) and mating pair formation modules (trb) of all three plasmids analysed share common modules and include a triphenylmethane reductase gene, tmr, that is responsible for decolorization of CV. Moreover, these accessory regions encode other enzymes that are dispensable for CV degradation and hence are involved in so-far-unknown metabolic pathways. Analysis of plasmid-mediated degradation of CV in Escherichia coli by ultra-high-performance liquid chromatography-electrospray ionization-quadrupole-time-of-flight MS revealed that leuco crystal violet was the first degradation product. Michler's ketone and 4-dimethylaminobenzaldehyde appeared as secondary degradation metabolites. Enzymes encoded in the E. coli chromosome seem to be responsible for cleavage of leuco crystal violet. Plasmid-mediated degradation of triphenylmethane dyes such as CV is an option for the biotechnological treatment of sludges contaminated with these dyes.


Assuntos
Comamonas/metabolismo , Delftia/metabolismo , Violeta Genciana/metabolismo , Plasmídeos/genética , Compostos de Tritil/metabolismo , Águas Residuárias/microbiologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Biodegradação Ambiental , Comamonas/classificação , Comamonas/genética , Comamonas/isolamento & purificação , Delftia/classificação , Delftia/genética , Delftia/isolamento & purificação , Dados de Sequência Molecular , Oxirredutases/genética , Oxirredutases/metabolismo , Plasmídeos/metabolismo , Esgotos/microbiologia , Eliminação de Resíduos Líquidos/instrumentação
15.
J Agric Food Chem ; 57(20): 9555-62, 2009 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-20560625

RESUMO

In this work, wheat from two farming systems, organic and conventional, was analyzed. Organic agriculture is one of the fastest growing sectors in the food industry of Europe and the United States. It is an open question, whether organic or conventional agricultural management influences variables such as metabolism, nutrient supply, seed loading and metabolite composition of wheat. Our aim was to detect if organic or conventional farming systems would affect concentrations of metabolites and substances in developing ears and in corresponding matured grain. Therefore, broadband metabolite profiles together with lipids, cations, starch and protein concentrations of wheat ears in the last phase of grain development and of matured grain from organic and conventional agriculture of a rigorously controlled field trial with two organic and two conventional systems were examined. It appears that seed metabolism and supply of developing ears differ in organic and conventional agriculture. However, the differences in 62 metabolite concentrations become marginal or disappear in the matured grains, indicating an adjustment of nutrients in the matured grain from organic agriculture. This result suggests a high degree of homeostasis in the final seed set independent of the growing regime.


Assuntos
Agricultura/métodos , Triticum/química , Triticum/metabolismo , Alimentos Orgânicos/análise , Proteínas de Plantas/análise , Proteínas de Plantas/metabolismo , Amido/análise , Amido/metabolismo , Triticum/crescimento & desenvolvimento
16.
Genome Biol ; 9(4): R72, 2008 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-18402659

RESUMO

BACKGROUND: Evolutionary changes that are due to different environmental conditions can be examined based on the various molecular aspects that constitute a cell, namely transcript, protein, or metabolite abundance. We analyzed changes in transcript and metabolite abundance in evolved and ancestor strains in three different evolutionary conditions - excess nutrient adaptation, prolonged stationary phase adaptation, and adaptation because of environmental shift - in two different strains of bacterium Escherichia coli K-12 (MG1655 and DH10B). RESULTS: Metabolite profiling of 84 identified metabolites revealed that most of the metabolites involved in the tricarboxylic acid cycle and nucleotide metabolism were altered in both of the excess nutrient evolved lines. Gene expression profiling using whole genome microarray with 4,288 open reading frames revealed over-representation of the transport functional category in all evolved lines. Excess nutrient adapted lines were found to exhibit greater degrees of positive correlation, indicating parallelism between ancestor and evolved lines, when compared with prolonged stationary phase adapted lines. Gene-metabolite correlation network analysis revealed over-representation of membrane-associated functional categories. Proteome analysis revealed the major role played by outer membrane proteins in adaptive evolution. GltB, LamB and YaeT proteins in excess nutrient lines, and FepA, CirA, OmpC and OmpA in prolonged stationary phase lines were found to be differentially over-expressed. CONCLUSION: In summary, we report the vital involvement of energy metabolism and membrane-associated functional categories in all of the evolutionary conditions examined in this study within the context of transcript, outer membrane protein, and metabolite levels. These initial data obtained may help to enhance our understanding of the evolutionary process from a systems biology perspective.


Assuntos
Escherichia coli/genética , Evolução Molecular , Perfilação da Expressão Gênica , Metabolômica , Adaptação Fisiológica , Proteínas da Membrana Bacteriana Externa/fisiologia , Metabolismo Energético , Proteínas de Escherichia coli/genética , Metaboloma , Proteômica , RNA Mensageiro , Biologia de Sistemas
17.
Plant Physiol ; 145(4): 1600-18, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17951459

RESUMO

We analyzed the role of the sucrose (Suc) synthase MtSucS1 during nodulation of the model legume Medicago truncatula, integrating data for the developmental, transcriptional, and metabolic processes affected downstream of an impaired Suc cleavage in root nodules. To reduce carbohydrate supply to nodule tissues, transgenic plants expressing a p35S-driven MtSucS1-antisense fusion were constructed. These plants displayed an up to 90% reduction of MtSucS1 proteins in roots and nodules. Phenotypic studies of two independent MtSucS1-reduced lines demonstrated that only under conditions depending on nodulation, these plants appeared to be impaired in above-ground growth. Specifically plant height, shoot weight, leaf development, flowering, as well as seed maturation were reduced, and the efficiency of photosynthesis was affected. Concomitantly, a significantly enhanced root to shoot ratio with a marked increase in root tip numbers was observed. Root nodule formation was found retarded and the impaired nodulation was accompanied by a less efficient nitrogen (N) acquisition. The decreased total N content of MtSucS1-antisense lines and an enhanced carbon to N ratio in roots, nodules, and shoots correlated with the extent of MtSucS1 knockdown. On the level of transcription, effects of an MtSucS1 reduction were evident for genes representing important nodes of the nodule carbon and N metabolism, while metabolite profiling revealed significantly lower levels of amino acids and their derivatives particularly in strongly MtSucS1-reduced nodules. Our results support the model that nodule-enhanced Suc synthase 1 of the model legume M. truncatula is required for the establishment and maintenance of an efficient N-fixing symbiosis.


Assuntos
Glucosiltransferases/metabolismo , Medicago truncatula/enzimologia , Fixação de Nitrogênio/fisiologia , Nódulos Radiculares de Plantas/enzimologia , Simbiose/fisiologia , Adaptação Fisiológica , Elementos Antissenso (Genética) , Biomassa , Carbono/metabolismo , Perfilação da Expressão Gênica , Genes de Plantas , Medicago truncatula/microbiologia , Medicago truncatula/fisiologia , Nitrogênio/metabolismo , Fenótipo , Brotos de Planta/crescimento & desenvolvimento , Nódulos Radiculares de Plantas/crescimento & desenvolvimento , Nódulos Radiculares de Plantas/metabolismo
18.
J Biotechnol ; 130(4): 354-63, 2007 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-17586079

RESUMO

The 2-methylcitrate cycle as the primary way to metabolize propionate was investigated using metabolic profiling. For this purpose, a fast harvesting procedure was applied in which cells growing in liquid minimal medium were harvested by a short centrifugation and freeze-dried. Subsequently, gas chromatography-mass spectrometry of polar extracts derivatized by MSTFA was employed for metabolite characterization. Routinely more than 300 different peaks were obtained in the chromatograms, and 74 substances were identified unequivocally by using pure standards. The procedure provided reliable data which closely relate to prior knowledge on flux distributions during growth on glucose and acetate as carbon sources. Propionate degradation via the 2-methylcitrate cycle was demonstrated on the metabolite level by the detection of the intermediates 2-methylcitrate and 2-methylisocitrate. Further characterization of the 2-methylcitrate cycle was carried out by comparing different mutant strains of this pathway. The growth deficit of a prpD2-mutant strain observed when propionate is added to a culture growing on acetate indicates that the toxic effect of propionate is based on the accumulation of 2-methylcitrate. It could also be shown that the 2-methylcitrate cycle is active in the absence of propionate and might fulfill house-keeping functions in the degradation of fatty acids or branched-chain amino acids.


Assuntos
Acetatos/metabolismo , Proteínas de Bactérias/metabolismo , Citratos/metabolismo , Corynebacterium glutamicum/metabolismo , Cromatografia Gasosa-Espectrometria de Massas/métodos , Glucose/metabolismo , Transdução de Sinais/fisiologia , Carbono/metabolismo , Simulação por Computador , Perfilação da Expressão Gênica/métodos , Modelos Biológicos
19.
Plant J ; 50(4): 660-77, 2007 May.
Artigo em Inglês | MEDLINE | ID: mdl-17419845

RESUMO

The genes MYB11, MYB12 and MYB111 share significant structural similarity and form subgroup 7 of the Arabidopsis thaliana R2R3-MYB gene family. To determine the regulatory potential of these three transcription factors, we used a combination of genetic, functional genomics and metabolite analysis approaches. MYB11, MYB12 and MYB111 show a high degree of functional similarity and display very similar target gene specificity for several genes of flavonoid biosynthesis, including CHALCONE SYNTHASE, CHALCONE ISOMERASE, FLAVANONE 3-HYDROXYLASE and FLAVONOL SYNTHASE1. Seedlings of the triple mutant myb11 myb12 myb111, which genetically lack a complete subgroup of R2R3-MYB genes, do not form flavonols while the accumulation of anthocyanins is not affected. In developing seedlings, MYB11, MYB12 and MYB111 act in an additive manner due to their differential spatial activity; MYB12 controls flavonol biosynthesis mainly in the root, while MYB111 controls flavonol biosynthesis primarily in cotyledons. We identified and confirmed additional target genes of the R2R3-MYB subgroup 7 factors, including the UDP-glycosyltransferases UGT91A1 and UGT84A1, and we demonstrate that the accumulation of distinct and structurally identified flavonol glycosides in seedlings correlates with the expression domains of the different R2R3-MYB factors. Therefore, we refer to these genes as PFG1-3 for 'PRODUCTION OF FLAVONOL GLYCOSIDES'.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/metabolismo , Flavonóis/metabolismo , Regulação da Expressão Gênica de Plantas , Fatores de Transcrição/genética , Sequência de Aminoácidos , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/química , Sequência de Bases , Cromatografia Líquida de Alta Pressão , Cromatografia em Camada Fina , Primers do DNA , Cromatografia Gasosa-Espectrometria de Massas , Genes de Plantas , Dados de Sequência Molecular , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Homologia de Sequência de Aminoácidos , Fatores de Transcrição/química , Transfecção
20.
J Agric Food Chem ; 54(21): 8301-6, 2006 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-17032043

RESUMO

In some European community countries up to 8% of the agricultural area is managed organically. The aim was to obtain a metabolite profile for wheat (Triticum aestivum L.) grains grown under comparable organic and conventional conditions. These conditions cannot be found in plant material originating from different farms or from products purchased in supermarkets. Wheat grains from a long-term biodynamic, bioorganic, and conventional farming system from the harvest 2003 from Switzerland were analyzed. The presented data show that using a high throughput GC-MS technique, it was possible to determine relative levels of a set of 52 different metabolites including amino acids, organic acids, sugars, sugar alcohols, sugar phosphates, and nucleotides from wheat grains. Within the metabolites from all field trials, there was at the most a 50% reduction comparing highest and lowest mean values. The statistical analysis of the data shows that the metabolite status of the wheat grain from organic and mineralic farming did not differ in concentrations of 44 metabolites. This result indicates no impact or a small impact of the different farming systems. In consequence, we did not detect extreme differences in metabolite composition and quality of wheat grains.


Assuntos
Agricultura/métodos , Alimentos Orgânicos/análise , Sementes/metabolismo , Triticum/metabolismo , Aminoácidos/análise , Carboidratos/análise , Ácidos Carboxílicos/análise , Cromatografia Gasosa-Espectrometria de Massas , Nucleotídeos/análise , Ácido Pantotênico/análise , Sementes/química , Triticum/química , Ureia/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...