Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Langmuir ; 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39016446

RESUMO

The novel material, one-dimensional lepidocrocite (1DL) titanate, is attracting industrial and scientific interest because of its applicability to a wide range of practical applications and its ease of synthesis and scale up of production. In this study, we investigated the CO2 adsorption capability and pore structures of 1DL freeze-dried and lithium chloride washed air-dried powders. The synthesized 1DL was characterized by X-ray diffraction, Raman spectroscopy, and scanning electron microscopy. Using the constant-volume method, CO2 gas adsorption revealed that the 1DL exhibits type IV adsorption-desorption isotherms. The heats of adsorption obtained from the adsorption branches are lower than those obtained from the desorption branches. Brunauer-Emmett-Teller (BET) analysis, using N2 gas adsorption isotherms at 77 K showed that 1DL possesses 80.2 m2/g of BET specific surface area. Nonlocal density functional theory analysis indicated that two types of pores, meso-pores and ultramicro pores, exist in the 1DL freeze-dried powders. This work provides deep insights into the pore structures and CO2 adsorption mechanisms of 1DL powders.

2.
Nano Lett ; 24(25): 7584-7592, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38775805

RESUMO

Herein, the self-assembly of one-dimensional titanium oxide lepidocrocite nanofilaments in 10 different water miscible organic solvents was investigated. The nanofilament snippets, with minimal cross sections of ∼5 × 7 Å2 and lengths around 30 nm, begin as an aqueous colloidal suspension. Upon addition, and brief mixing, of the colloidal suspension into a given solvent, a multitude of morphologies─seemingly based on the hydrophilicity and polarity of the solvent─emerge. These morphologies vary between sheets, highly networked webs, and discrete fibers, all with no apparent change in the lepidocrocite structure. On the micro- and nanoscale, the morphologies are reminiscent of biological, rather than inorganic, materials. The results of this work give insight into the self-assembly of these materials and offer new pathways for novel macrostructures/morphologies assembled from these highly adsorbent and catalytically active low-dimensional materials.

3.
Adv Mater ; 36(28): e2402012, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38722144

RESUMO

Metal oxide nanostructures have received an increasing attention owing to their unique chemical and physical properties along with their widespread applications in various fields. This article provides an overview of the recent discovery - christened Hydroxides-Derived Nanostructures, or HDNs - in which hydroxide aqueous solutions (mostly tetramethylammonium hydroxide, TMAH) are reacted at temperatures < 100 °C and under atmospheric pressure with various metal-containing precursors to scalably prepare novel metal oxide nanostructures. In one case, a dozen commercial and earth abundant Ti-containing powders such as binary carbides, nitrides, borides, among others, are converted into new, 1D TiO2-based lepidocrocite (1DL) nanofilaments (NFs). Application-wise, the 1DLs show outstanding performance in a number of energy, environmental, and biomedical fields such as photo- and electrocatalysis, water splitting, lithium-sulfur and lithium-ion batteries, water purification, dye degradation, cancer therapy, and polymer composites. In addition to 1DL, the HDNs family encompasses other metal oxides nanostructures including magnetic Fe3O4 nanoparticles and MnO2 birnessite-based crystalline 2D flakes. The latter showed promise in electrochemical energy conversion and storage applications. The developed recipe provides a new vista in the molecular self-assembly synthesis of nanomaterials that can advance the field with a library of novel nanostructures with substantial implications in a multitude of fields.

4.
Artigo em Inglês | MEDLINE | ID: mdl-37890126

RESUMO

The high theoretical energy density of metal-sulfur batteries compared to their lithium-ion counter parts renders sulfur-based electrode chemistries attractive. Additionally, sulfur is relatively abundant and environmentally benign. Yet, issues like the low conductivity of sulfur, polysulfide (PS) formation, and shuttling have hindered the development of sulfur chemistries. Here, we react titanium carbide powders with tetramethylammonium hydroxide ammonium salts at 50 °C for 5 days and convert them into one dimensional, titania-based lepidocrocite (1DL) nanofilaments (NFs) using our facile bottom-up approach. This simple and scalable approach led to better electrode functionalization, facile tunability, and a higher density of active sites. The 1DL NFs self-assembled into a variety of microstructures─from individual 1DL NFs with minimal cross sections ≈5 × 7 Å2 to 2D flakes to mesoscopic particles. A composite was made with a 1:1 weight ratio of sulfur and 1DL NFs, which were hand-ground, mixed with carbon black and binder in a weight ratio of 70:20:10, respectively. We obtained a specific capacity of 750 mA h g-1 at 0.5C for 300 cycles. The 1DL NFs that, in this case assembled into 2D layers, trapped the polysulfides, PSs, by forming thiosulfate species and Lewis acid-base interactions with the Ti, as confirmed by post-mortem X-ray photoelectron spectroscopy. These interactions were also confirmed by PS adsorption via UV-vis spectroscopy and shuttle current measurements that showed lower PS shuttling in the 1DL NFs cells.

5.
Nanomicro Lett ; 15(1): 194, 2023 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-37556089

RESUMO

Two-dimensional transition metal carbides and nitrides (MXene) have emerged as promising candidates for microwave absorption (MA) materials. However, they also have some drawbacks, such as poor impedance matching, high self-stacking tendency, and high density. To tackle these challenges, MXene nanosheets were incorporated into polyacrylonitrile (PAN) nanofibers and subsequently assembled into a three-dimensional (3D) network structure through PAN carbonization, yielding MXene/C aerogels. The 3D network effectively extends the path of microcurrent transmission, leading to enhanced conductive loss of electromagnetic (EM) waves. Moreover, the aerogel's rich pore structure significantly improves the impedance matching while effectively reducing the density of the MXene-based absorbers. EM parameter analysis shows that the MXene/C aerogels exhibit a minimum reflection loss (RLmin) value of - 53.02 dB (f = 4.44 GHz, t = 3.8 mm), and an effective absorption bandwidth (EAB) of 5.3 GHz (t = 2.4 mm, 7.44-12.72 GHz). Radar cross-sectional (RCS) simulations were employed to assess the radar stealth effect of the aerogels, revealing that the maximum RCS reduction value of the perfect electric conductor covered by the MXene/C aerogel reaches 12.02 dB m2. In addition to the MA performance, the MXene/C aerogel also demonstrates good thermal insulation performance, and a 5-mm-thick aerogel can generate a temperature gradient of over 30 °C at 82 °C. This study provides a feasible design approach for creating lightweight, efficient, and multifunctional MXene-based MA materials.

6.
Adv Mater ; 35(8): e2208659, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36369973

RESUMO

2D MXenes have diverse and chemically tunable optical properties that arise from an interplay between free carriers, interband transitions, and plasmon resonances. The nature of photoexcitations and their dynamics in three different members of the MXene family, Ti3 C2 , Mo2 Ti2 C3 , and Nb2 C, are investigated using two complementary pump-probe techniques, transient optical absorption, and time-resolved terahertz (THz) spectroscopy. Measurements reveal pronounced plasmonic effects in the visible and near-IR in all three. Optical excitation, with either 400 or 800 nm pulses, results in a rapid increase in lattice temperature, evidenced by a pronounced broadening of the plasmon mode that presents as a plasmon bleach in transient absorption measurements. Observed kinetics of plasmon bleach recovery provide a means to monitor lattice cooling. Remarkably slow cooling, proceeding over hundreds of picoseconds to nanoseconds time scales, implies MXenes have low thermal conductivities. The slowest recovery kinetics are observed in the MXene with the highest free carrier density, viz. Ti3 C2 , that supports phonon scattering by free carriers as a possible mechanism limiting thermal conductivity. These new insights into photoexcitation dynamics can facilitate their applications in photothermal solar energy conversion, plasmonic devices, and even photothermal therapy and drug delivery.

7.
RSC Adv ; 12(47): 30846-30850, 2022 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-36349151

RESUMO

Treatment of HF or HCl/LiF etched Ti3C2T z with 0.05 M NaHCO3 before water washing reduces the wastewater generated by 75%. When etched with HF, cryolite (Na3AlF6) precipitation from spent etching waste effectively removes fluorine from this waste stream, offers insight into the etching chemistry of MAX to MXene, and provides an effective analytical tool for optimization of MXene production. Additionally, washing HF etched multilayered Ti3C2T z with 0.05 M NaHCO3 allows for the production of delaminated Ti3C2T z colloidal suspensions, which typically requires the use of TBAOH or DMSO for intercalation and subsequent delamination. Ti3C2T z made with HCl/LiF and washed with 0.05 M NaHCO3 yields a colloidal suspension with a concentration of 18 mg mL-1 and a film conductivity of 1150 S cm-1.

8.
Adv Mater ; 33(39): e2103393, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34396592

RESUMO

Since their discovery in 2011, the number of 2D transition metal carbides and nitrides (MXenes) has steadily increased. Currently more than 40 MXene compositions exist. The ultimate number is far greater and in time they may develop into the largest family of 2D materials known. MXenes' unique properties, such as their metal-like electrical conductivity reaching ≈20 000 S cm-1 , render them quite useful in a large number of applications, including energy storage, optoelectronic, biomedical, communications, and environmental. The number of MXene papers and patents published has been growing quickly. The first MXene generation is synthesized using selective etching of metal layers from the MAX phases, layered transition metal carbides and carbonitrides using hydrofluoric acid. Since then, multiple synthesis approaches have been developed, including selective etching in a mixture of fluoride salts and various acids, non-aqueous etchants, halogens, and molten salts, allowing for the synthesis of new MXenes with better control over their surface chemistries. Herein, a brief historical overview of the first 10 years of MXene research and a perspective on their synthesis and future development are provided. The fact that their production is readily scalable in aqueous environments, with high yields bodes well for their commercialization.

9.
Adv Sci (Weinh) ; 8(3): 2003656, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33552874

RESUMO

Enhancing both the energy storage and power capabilities of electrochemical capacitors remains a challenge. Herein, Ti3C2T z MXene is mixed with MoO3 nanobelts in various mass ratios and the mixture is used to vacuum filter binder free, open, flexible, and free-standing films. The conductive Ti3C2T z flakes bridge the nanobelts, facilitating electron transfer; the randomly oriented, and interconnected, MoO3 nanobelts, in turn, prevent the restacking of the Ti3C2T z nanosheets. Benefitting from these advantages, a MoO3/Ti3C2T z film with a 8:2 mass ratio exhibits high gravimetric/volumetric capacities with good cyclability, namely, 837 C g-1 and 1836 C cm-3 at 1 A g-1 for an ≈ 10 µm thick film; and 767 C g-1 and 1664 C cm-3 at 1 A g-1 for ≈ 50 µm thick film. To further increase the energy density, hybrid capacitors are fabricated with MoO3/Ti3C2T z films as the negative electrodes and nitrogen-doped activated carbon as the positive electrodes. This device delivers maximum gravimetric/volumetric energy densities of 31.2 Wh kg-1 and 39.2 Wh L-1, respectively. The cycling stability of 94.2% retention ratio after 10 000 continuous charge/discharge cycles is also noteworthy. The high energy density achieved in this work can pave the way for practical applications of MXene-containing materials in energy storage devices.

10.
Nanoscale ; 13(1): 311-319, 2021 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-33338088

RESUMO

A vacancy-ordered MXene, Mo1.33CTz, obtained from the selective etching of Al and Sc from the parent i-MAX phase (Mo2/3Sc1/3)2AlC has previously shown excellent properties for supercapacitor applications. Attempts to synthesize the same MXene from another precursor, (Mo2/3Y1/3)2AlC, have not been able to match its forerunner. Herein, we show that the use of an AlY2.3 alloy instead of elemental Al and Y for the synthesis of (Mo2/3Y1/3)2AlC i-MAX, results in a close to 70% increase in sample purity due to the suppression of the main secondary phase, Mo3Al2C. Furthermore, through a modified etching procedure, we obtain a Mo1.33CTz MXene of high structural quality and improve the yield by a factor of 6 compared to our previous efforts. Free-standing films show high volumetric (1308 F cm-3) and gravimetric (436 F g-1) capacitances and a high stability (98% retention) at the level of, or even beyond, those reported for the Mo1.33CTz MXene produced from the Sc-based i-MAX. These results are of importance for the realization of high quality MXenes through use of more abundant elements (Y vs. Sc), while also reducing waste (impurity) material and facilitating the synthesis of a high-performance material for applications.

11.
Nanoscale ; 12(47): 24196-24205, 2020 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-33289739

RESUMO

Lithium-sulfur (Li-S) batteries are regarded as potential next-generation energy storage systems due to their high theoretical energy densities. However, the dissolution of lithium polysulfides (LiPSs) upon cycling can result in severe capacity degradation. Achieving high rate capabilities with good cycling stability remains a huge obstacle for the practical implementation of Li-S batteries. Here we developed a novel, multifunctional, hierarchical structure by self-assembling core-shell MnO2 nanorods @ hollow porous carbon with 2D Ti3C2Tx nanosheets, labelled as MCT, as an efficient polysulfide mediator for Li-S cathodes. The integration of the polar MnO2 core and hollow porous carbon shell captures LiPSs two ways: physical confinement and chemisorption. The conductive Ti3C2Tx nanosheets construct a continuous and conductive network, which not only promotes charge transfer and ion diffusion but also boosts LiPS adsorption and conversion. Based on these merits, the MCT/S cathode delivers good rate capability (688 mA h g-1 at 2.0C) and outstanding long-term cyclability (0.044% capacity decay per cycle over 600 cycles at 2.0C).

12.
Acta Biomater ; 115: 104-115, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32795646

RESUMO

Two-dimensional (2D) materials remain highly interesting for assembling three-dimensional (3D) structures, amongst others, in the form of macroscopic hydrogels. Herein, we present a novel approach for inducing chemical inter-sheet crosslinks via an ethylenediamine mediated reaction between Ti3C2Tx and graphene oxide in order to obtain a reduced graphene oxide-MXene (rGO-MXene) hydrogel. The composite hydrogels are hydrophilic with a stiffness of ~20 kPa. They also possess a unique inter-connected porous architecture, which led to a hitherto unprecedented ability of human cells across three different types, epithelial adenocarcinoma, neuroblastoma and fibroblasts, to form inter-connected three-dimensional networks. The attachments of the cells to the rGO-MXene hydrogels were superior to those of the sole rGO-control gels. This phenomenon stems from the strong affinity of cellular protrusions (neurites, lamellipodia and filopodia) to grow and connect along architectural network paths within the rGO-MXene hydrogel, which could lead to advanced control over macroscopic formations of cellular networks for technologically relevant bioengineering applications, including tissue engineering and personalized diagnostic networks-on-chip. STATEMENT OF SIGNIFICANCE: Conventional hydrogels are made of interconnected polymeric fibres. Unlike conventional case, we used hydrothermal and chemical approach to form interconnected porous hydrogels made of two-dimensional flakes from graphene oxide and metal carbide from a new family of MXenes (Ti3C2Tx). This way, we formed three-dimensional porous hydrogels with unique porous architecture of well-suited chemical surfaces and stiffness. Cells from three different types cultured on these scaffolds formed extended three-dimensional networks - a feature of extended cellular proliferation and pre-requisite for formation of organoids. Considering the studied 2D materials typically constitute materials exhibiting enhanced supercapacitor performances, our study points towards better understanding of design of tissue engineering materials for the future bioengineering fields including personalized diagnostic networks-on-chip, such as artificial heart actuators.


Assuntos
Grafite , Hidrogéis , Humanos , Engenharia Tecidual , Titânio
13.
RSC Adv ; 10(42): 25266-25274, 2020 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-35517448

RESUMO

The literature on MXenes, an important class of 2D materials discovered in 2011, is now abundant. Yet, the lack of well-defined structures, with definite crystal orientations, has so far hindered our capability to identify some key aspects ruling MXene's chemical exfoliation from their parent MAX phase. Herein the chemical exfoliation of V2AlC is studied by using well-defined square pillars with lateral sizes from 7 µm up to 500 µm, processed from centimeter-sized V2AlC single crystals. The MXene conversion kinetics are assessed with µm spatial resolution by combining Raman spectroscopy with scanning electron and optical microscopies. HF penetration, and the loss of the Al species, take place through the edges. At room temperature, and on a reasonable time scale, no etching can takes place by HF penetration through the basal planes, viz. normal to the basal planes. In defect-free pillars, etching through the edges is isotropic. Initially the etching rate is linear with a rate of 2.2 ± 0.3 µm h-1 at 25 °C. At a distance of ≈45 µm, the etching rate is greatly diminished.

14.
Small ; 16(4): e1905784, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31867896

RESUMO

MXenes-2D carbides/nitrides derived from their bulk nanolamellar Mn +1 AXn phase (MAX) counterparts-are, for the most part, obtained by chemical etching. Despite the fact that the MA bonds in the MAX phases are not weak, in this work it is demonstrated that relatively large MAX single crystals can be mechanically exfoliated using the adhesive tape method to produce flakes whose thickness can be reduced down to half a unit cell. The exfoliated flakes, transferred onto SiO2 /Si substrates, are analyzed using electric force microscopy (EFM). No appreciable variation in EFM signal with flake thickness is found. EFM contrast between the flakes and SiO2 not only depends on the contact surface potential, but also on the local capacitance. The contribution of the latter can be used to show the metallic character-confirmed by four-contact resistivity measurements-of even the thinnest of flakes. Because the A-layers are preserved, strictly speaking MXenes are not dealt with in this work, but rather MAXenes. This is important in the case where the "A" layers contain magnetic elements such as Mo4 Ce4 Al7 C3 , whose structure is a derivative of the MAX structure.

15.
Adv Mater ; 31(43): e1903271, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31523860

RESUMO

2D transition metal carbides, known as MXenes, are transparent when the samples are thin enough. They are also excellent electrical conductors with metal-like carrier concentrations. Herein, these characteristics are exploited to replace gold (Au) in GaAs photodetectors. By simply spin-coating transparent Ti3 C2 -based MXene electrodes from aqueous suspensions onto GaAs patterned with a photoresist and lifted off with acetone, photodetectors that outperform more standard Au electrodes are fabricated. Both the Au- and MXene-based devices show rectifying contacts with comparable Schottky barrier heights and internal electric fields. The latter, however, exhibit significantly higher responsivities and quantum efficiencies, with similar dark currents, hence showing better dynamic range and detectivity, and similar sub-nanosecond response speeds compared to the Au-based devices. The simple fabrication process is readily integratable into microelectronic, photonic-integrated circuits and silicon photonics processes, with a wide range of applications from optical sensing to light detection and ranging and telecommunications.

16.
ACS Appl Mater Interfaces ; 11(42): 39143-39149, 2019 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-31539221

RESUMO

Herein, we present the fabrication of dispersed, 5.0 wt % (1.74 vol %) Ti3C2Tz MXene epoxy nanocomposites (NCs), and report on their water transport and mechanical properties. To make the composites, Li+ ions between Ti3C2Tz MXene multilayers, MLs, present after the etching step were exchanged with either 12-aminolauric acid, ALA, or di(hydrogenated tallow)benzyl methyl ammonium chloride, DHT. After drying, the resulting ML powders were added at room temperature to the epoxy resin (diglycidyl ether of bisphenol A), followed by the curing agent, triethylenetetramine. The NCs were characterized by X-ray diffraction, thermogravimetric analysis, dynamic vapor sorption, dynamic mechanical analysis, scanning and transmission electron microscopies, and infrared spectroscopy. From XRD, the lack of signature MXene basal peaks, as well as evidence of exfoliation supported by TEM micrographs, we conclude that the MXene ML had indeed been intercalated by the epoxy. The distribution of the exfoliated multilayers, MLs, however, was not uniform. Nevertheless, our relative permeabilities, with a 1.74 vol % loading, are 5 times lower than results obtained in the carbon- or clay-reinforced epoxy NC literature. The lower permeabilities are due to reductions in both solubilities and diffusivities relative to the neat polymer. In the case of DHT, the water solubility at all temperatures was almost halved. The mechanical properties and thermal stability are found to be slightly improved with the addition of DHT-MXene. As far as we are aware, this is the first report of exfoliation of MXene in an epoxy matrix. Additionally, this study is the first to measure the diffusion of water in MXene epoxy NCs. More work on better dispersion of the MLs is indicated and ongoing.

17.
Angew Chem Int Ed Engl ; 58(36): 12655-12660, 2019 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-31293049

RESUMO

MXenes have shown promise in myriad applications, such as energy storage, catalysis, EMI shielding, among many others. However, MXene oxidation in aqueous colloidal suspensions when stored in water at ambient conditions remains a challenge. It is now shown that by simply capping the edges of individual MXene flakes, Ti3 C2 Tz and V2 CTz , by polyanions such as polyphosphates, polysilicates or polyborates, it is possible to quite significantly reduce their propensity for oxidation even when held in aerated water for weeks. This breakthrough resulted from the realization that the edges of MXene sheets are positively charged. It is thus an example of selectively functionalizing the edges differently from the MXene sheet surfaces.

18.
ACS Appl Mater Interfaces ; 11(22): 20425-20436, 2019 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-31071257

RESUMO

Clay-reinforced nylon-6 nanocomposites (NCs)-characterized by the full exfoliation of the nanoreinforcement-were introduced in the marketplace in the 1990s. Herein, we demonstrate, for the first time, that Ti3C2T z MXene can be incorporated into nylon-6 to synthesize melt-processable nanocomposites with excellent water barrier properties (94% reduction in water vapor permeation). To intercalate the ε-caprolactam monomer between the MXene multilayers, the latter were first treated with 12-aminolauric acid, a low-cost, nontoxic, biodegradable, and long shelf life compound. Upon heating to 250 °C, in the presence of 6-aminocaproic acid, in situ polymerization occurred, yielding melt-processable nylon-6/MXene NCs that were, in turn, studied by thermogravimetric analysis, differential scanning calorimetry, X-ray diffraction, scanning and transmission electron microscopy, infrared spectroscopy, and dynamic vapor sorption analysis. Using the latter, moisture-sorption isotherms of a neat and a 1.9 vol % NC, at 60 °C, were fit to the Guggenheim, Anderson, and de Boer equation. Solubility, permeation, and diffusion coefficients of water through the NCs were measured as a function of temperature and found to be the lowest ever reported for nylon-6, despite the fact that, at ∼1.9 and 5.0 vol %, the MXene loads were relatively low. This record low diffusivity is ascribed to the very large aspect ratios-500 to 1000-of Ti3C2T z flakes and their dispersion. The water permeation rate is a factor of 5 lower than the best reported in the much more mature nylon/clay field, suggesting lower values can be achieved with further optimization. Lastly infrared spectroscopy spectra of neat and NC samples suggest the surface terminations of the 12-Ti3C2T z flakes bind with nylon-6, limiting water adsorption sites, resulting in reduced solubility in the NC films.

19.
ACS Nano ; 13(3): 3301-3309, 2019 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-30811181

RESUMO

Structural defects and heterogeneities play an enormous role in the formation of localized hot spots in 2D materials used in a wide range of applications from electronics to energy systems. In this report, we employ scanning thermal microscopy (SThM) to spatially map the temperature rise across various defects and heterogeneities of titanium carbide (Ti3C2T x; T stands for surface terminations) MXene nanostructures under high electrical bias with sub-50 mK temperature resolution and sub-100 nm spatial resolution. We investigated several Ti3C2T x flakes having different thicknesses as well as heterogeneous MXene structures incorporating line defects or vertical heterojunctions. High-resolution temperature rise maps allow us to identify localized hot spots and to quantify the nonuniformity of the temperature fields across various morphological features. The results show that the local heating is most severe in vertical junctions of MXene flakes and is highly affected by nonuniform conduction due to the presence of line defects. These results provide a direct insight into the power dissipation of MXene-based devices and the roles of various heterogeneities that are inherent to the material synthesis process. This study provides a guideline for how a better understanding of the structure-property-processing correlations and further optimization of the synthesis routes could improve the lifetime, safety, and operation limits of the MXene-based devices.

20.
Nat Commun ; 10(1): 686, 2019 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-30770801

RESUMO

Deformation in Earth's lithosphere is localised in narrow, high-strain zones. Phyllosilicates, strongly anisotropic layered minerals, are abundant in these rocks, where they accommodate much of the strain and play a significant role in inhibiting or triggering earthquakes. Until now it was understood that phyllosilicates could deform only by dislocation glide along layers and could not accommodate large strains without cracking and dilation. Here we show that a new class of atomic-scale defects, known as ripplocations, explain the development of layer-normal strain without brittle damage. We use high-resolution transmission electron microscopy (TEM) to resolve nano-scale bending characteristic of ripplocations in the phyllosilicate mineral biotite. We demonstrate that conjugate delamination arrays are the result of elastic strain energy release due to the accumulation of layer-normal strain in ripplocations. This work provides the missing mechanism necessary to understand phyllosilicate deformation, with important rheological implications for phyllosilicate bearing seismogenic faults and subduction zones.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...