Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Aging Neurosci ; 16: 1401109, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38836050

RESUMO

Down syndrome (DS) is a segmental progeroid genetic disorder associated with multi-systemic precocious aging phenotypes, which are particularly evident in the immune and nervous systems. Accordingly, people with DS show an increased biological age as measured by epigenetic clocks. The Ts65Dn trisomic mouse, which harbors extra-numerary copies of chromosome 21 (Hsa21)-syntenic regions, was shown to recapitulate several progeroid features of DS, but no biomarkers of age have been applied to it so far. In this pilot study, we used a mouse-specific epigenetic clock to measure the epigenetic age of hippocampi from Ts65Dn and euploid mice at 20 weeks. Ts65Dn mice showed an increased epigenetic age in comparison with controls, and the observed changes in DNA methylation partially recapitulated those observed in hippocampi from people with DS. Collectively, our results support the use of the Ts65Dn model to decipher the molecular mechanisms underlying the progeroid DS phenotypes.

2.
Rev Neurosci ; 34(4): 365-423, 2023 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-36170842

RESUMO

Down syndrome (DS), a genetic pathology caused by triplication of chromosome 21, is characterized by brain hypotrophy and impairment of cognition starting from infancy. While studies in mouse models of DS have elucidated the major neuroanatomical and neurochemical defects of DS, comparatively fewer investigations have focused on the electrophysiology of the DS brain. Electrical activity is at the basis of brain functioning. Therefore, knowledge of the way in which brain circuits operate in DS is fundamental to understand the causes of behavioral impairment and devise targeted interventions. This review summarizes the state of the art regarding the electrical properties of the DS brain, starting from individual neurons and culminating in signal processing in whole neuronal networks. The reported evidence derives from mouse models of DS and from brain tissues and neurons derived from individuals with DS. EEG data recorded in individuals with DS are also provided as a key tool to understand the impact of brain circuit alterations on global brain activity.


Assuntos
Síndrome de Down , Camundongos , Animais , Humanos , Síndrome de Down/genética , Síndrome de Down/patologia , Neurônios/fisiologia , Encéfalo/patologia , Cognição , Modelos Animais de Doenças , Redes Neurais de Computação
3.
Nutrients ; 14(14)2022 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-35889838

RESUMO

The triplication of chromosome 21 causes Down syndrome (DS), a genetic disorder that is characterized by intellectual disability (ID). The causes of ID start in utero, leading to impairments in neurogenesis, and continue into infancy, leading to impairments in dendritogenesis, spinogenesis, and connectivity. These defects are associated with alterations in mitochondrial and metabolic functions and precocious aging, leading to the early development of Alzheimer's disease. Intense efforts are currently underway, taking advantage of DS mouse models to discover pharmacotherapies for the neurodevelopmental and cognitive deficits of DS. Many treatments that proved effective in mouse models may raise safety concerns over human use, especially at early life stages. Accumulating evidence shows that fatty acids, which are nutrients present in normal diets, exert numerous positive effects on the brain. Here, we review (i) the knowledge obtained from animal models regarding the effects of fatty acids on the brain, by focusing on alterations that are particularly prominent in DS, and (ii) the progress recently made in a DS mouse model, suggesting that fatty acids may indeed represent a useful treatment for DS. This scenario should prompt the scientific community to further explore the potential benefit of fatty acids for people with DS.


Assuntos
Doença de Alzheimer , Transtornos Cognitivos , Síndrome de Down , Deficiência Intelectual , Doença de Alzheimer/complicações , Doença de Alzheimer/tratamento farmacológico , Animais , Transtornos Cognitivos/tratamento farmacológico , Modelos Animais de Doenças , Síndrome de Down/tratamento farmacológico , Ácidos Graxos/farmacologia , Humanos , Camundongos , Neurogênese
4.
Front Cell Neurosci ; 16: 903729, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35634470

RESUMO

Down syndrome (DS), also known as trisomy 21, is a genetic disorder caused by triplication of Chromosome 21. Gene triplication may compromise different body functions but invariably impairs intellectual abilities starting from infancy. Moreover, after the fourth decade of life people with DS are likely to develop Alzheimer's disease. Neurogenesis impairment during fetal life stages and dendritic pathology emerging in early infancy are thought to be key determinants of alterations in brain functioning in DS. Although the progressive improvement in medical care has led to a notable increase in life expectancy for people with DS, there are currently no treatments for intellectual disability. Increasing evidence in mouse models of DS reveals that pharmacological interventions in the embryonic and neonatal periods may greatly benefit brain development and cognitive performance. The most striking results have been obtained with pharmacotherapies during embryonic life stages, indicating that it is possible to pharmacologically rescue the severe neurodevelopmental defects linked to the trisomic condition. These findings provide hope that similar benefits may be possible for people with DS. This review summarizes current knowledge regarding (i) the scope and timeline of neurogenesis (and dendritic) alterations in DS, in order to delineate suitable windows for treatment; (ii) the role of triplicated genes that are most likely to be the key determinants of these alterations, in order to highlight possible therapeutic targets; and (iii) prenatal and neonatal treatments that have proved to be effective in mouse models, in order to rationalize the choice of treatment for human application. Based on this body of evidence we will discuss prospects and challenges for fetal therapy in individuals with DS as a potential means of drastically counteracting the deleterious effects of gene triplication.

5.
Annu Rev Pharmacol Toxicol ; 62: 211-233, 2022 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-34990205

RESUMO

Those with Down syndrome (DS)-trisomy for chromosome 21-are routinely impacted by cognitive dysfunction and behavioral challenges in children and adults and Alzheimer's disease in older adults. No proven treatments specifically address these cognitive or behavioral changes. However, advances in the establishment of rodent models and human cell models promise to support development of such treatments. A research agenda that emphasizes the identification of overexpressed genes that contribute demonstrably to abnormalities in cognition and behavior in model systems constitutes a rational next step. Normalizing expression of such genes may usher in an era of successful treatments applicable across the life span for those with DS.


Assuntos
Síndrome de Down , Doenças Neurodegenerativas , Idoso , Animais , Modelos Animais de Doenças , Síndrome de Down/tratamento farmacológico , Síndrome de Down/genética , Feminino , Humanos , Doenças Neurodegenerativas/tratamento farmacológico , Gravidez
6.
Dev Neurosci ; 44(1): 23-38, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34852343

RESUMO

Down syndrome (DS), which is due to triplication of chromosome 21, is constantly associated with intellectual disability (ID). ID can be ascribed to both neurogenesis impairment and dendritic pathology. These defects are replicated in the Ts65Dn mouse, a widely used model of DS. While neurogenesis impairment in DS is a fetal event, dendritic pathology occurs after the first postnatal months. Neurogenesis alterations across the life span have been extensively studied in the Ts65Dn mouse. In contrast, there is scarce information regarding dendritic alterations at early life stages in this and other models, although there is evidence for dendritic alterations in adult mouse models. Thus, the goal of the current study was to establish whether dendritic alterations are already present in the neonatal period in Ts65Dn mice. In Golgi-stained brains, we quantified the dendritic arbors of layer II/III pyramidal neurons in the frontal cortex of Ts65Dn mice aged 2 (P2) and 8 (P8) days and their euploid littermates. In P2 Ts65Dn mice, we found a moderate hypotrophy of the apical and collateral dendrites but a patent hypotrophy of the basal dendrites. In P8 Ts65Dn mice, the distalmost apical branches were missing or reduced in number, but there were no alterations in the collateral and basal dendrites. No genotype effects were detected on either somatic or dendritic spine density. This study shows dendritic branching defects that mainly involve the basal domain in P2 Ts65Dn mice and the apical but not the other domains in P8 Ts65Dn mice. This suggests that dendritic defects may be related to dendritic compartment and age. The lack of a severe dendritic pathology in Ts65Dn pups is reminiscent of the delayed appearance of patent dendritic alterations in newborns with DS. This similarly highlights the usefulness of the Ts65Dn model for the study of the mechanisms underlying dendritic alterations in DS and the design of possible therapeutic interventions.


Assuntos
Síndrome de Down , Neocórtex , Animais , Modelos Animais de Doenças , Síndrome de Down/tratamento farmacológico , Síndrome de Down/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neurogênese , Células Piramidais/patologia
7.
Crit Rev Food Sci Nutr ; 62(1): 13-50, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-32914634

RESUMO

Flavonoids have long been known to exert benefits in various health problems. Among them, the BDNF mimetic 7,8-Dihydroxyflavone (7,8-DHF) is emerging as a potential treatment for a constellation of brain and body pathologies. During the past 10 years, more than 180 preclinical studies have explored the efficacy of 7,8-DHF in animal models of different pathologies. The current review intends to be an exhaustive survey of these studies. By providing detailed information on the rationale of the experimental design and outcome of treatment, we will give the reader tools to critically interpret the achievement obtained so far. If we put together each individual piece of this complex mosaic, a picture emerges that is full of promise regarding the potential usefulness of 7,8-DHF for human treatment. Much has been done so far and we believe that the time is now ripe to move from the bench to the bedside, in order to establish whether supplementation with 7,8-DHF may serve as therapy or, at least, as adjuvant for the treatment of pathologies affecting brain and body functioning.


Assuntos
Encefalopatias , Flavonas , Animais , Encefalopatias/tratamento farmacológico , Flavonas/farmacologia , Flavonoides , Humanos , Receptor trkB
8.
Nutr Neurosci ; 25(7): 1400-1412, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33345728

RESUMO

OBJECTIVES: The brains of individuals with Down syndrome (DS) present defects in neurogenesis and synaptogenesis during prenatal and early postnatal stages that are partially responsible for their cognitive disabilities. Because oleic and linolenic fatty acids enhance neurogenesis, synaptogenesis, and cognitive abilities in rodents and humans, in this study we evaluated the ability of these compounds to restore these altered phenotypes in the Ts65Dn (TS) mouse model of DS during early postnatal stages. METHODS: TS and euploid mice were treated with oleic or linolenic acid from PD3 to PD15, and the short- and long- term effects of these acids on neurogenesis and synaptogenesis were evaluated. The effects of these treatments on the cognitive abilities of TS mice during early adulthood were also evaluated. RESULTS: Administration of oleic or linolenic acid did not modify cell proliferation immediately after treatment discontinuation or several weeks later. However, oleic acid increased the total number of DAPI+ cells (+ 26%), the percentage of BrdU+ cells that acquired a neural phenotype (+ 9.1%), the number of pre- (+ 29%) and post-synaptic (+ 32%) terminals and the cognitive abilities of TS mice (+ 18.1%). In contrast, linolenic acid only produced a slight cognitive improvement in TS mice. (+12.1%). DISCUSSION: These results suggest that early postnatal administration of oleic acid could palliate the cognitive deficits of DS individuals.


Assuntos
Síndrome de Down , Animais , Cognição , Modelos Animais de Doenças , Síndrome de Down/genética , Síndrome de Down/terapia , Feminino , Hipocampo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Ácido Oleico , Gravidez , Ácido alfa-Linolênico/uso terapêutico
9.
Neurobiol Dis ; 159: 105508, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34509609

RESUMO

STUDY OBJECTIVES: The use of mouse models in sleep apnea study is limited by the belief that central (CSA) but not obstructive sleep apneas (OSA) occur in rodents. We aimed to develop a protocol to investigate the presence of OSAs in wild-type mice and, then, to apply it to a validated model of Down syndrome (Ts65Dn), a human pathology characterized by a high incidence of OSAs. METHODS: In a pilot study, nine C57BL/6J wild-type mice were implanted with electrodes for electroencephalography (EEG), neck electromyography (nEMG), and diaphragmatic activity (DIA), and then placed in a whole-body-plethysmographic (WBP) chamber for 8 h during the rest (light) phase to simultaneously record sleep and breathing activity. CSA and OSA were discriminated on the basis of WBP and DIA signals recorded simultaneously. The same protocol was then applied to 12 Ts65Dn mice and 14 euploid controls. RESULTS: OSAs represented about half of the apneic events recorded during rapid-eye-movement-sleep (REMS) in each experimental group, while the majority of CSAs were found during non-rapid eye movement sleep. Compared with euploid controls, Ts65Dn mice had a similar total occurrence rate of apneic events during sleep, but a significantly higher occurrence rate of OSAs during REMS, and a significantly lower occurrence rate of CSAs during NREMS. CONCLUSIONS: Mice physiologically exhibit both CSAs and OSAs. The latter appear almost exclusively during REMS, and are highly prevalent in Ts65Dn. Mice may, thus, represent a useful model to accelerate the understanding of the pathophysiology and genetics of sleep-disordered breathing and to help the development of new therapies.


Assuntos
Síndrome de Down/fisiopatologia , Apneia do Sono Tipo Central/fisiopatologia , Apneia Obstrutiva do Sono/fisiopatologia , Sono REM/fisiologia , Animais , Modelos Animais de Doenças , Eletroencefalografia , Eletromiografia , Camundongos , Projetos Piloto , Pletismografia Total
10.
Mol Syndromol ; 12(4): 202-218, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34421499

RESUMO

Research focused on Down syndrome has increased in the last several years to advance understanding of the consequences of trisomy 21 (T21) on molecular and cellular processes and, ultimately, on individuals with Down syndrome. The Trisomy 21 Research Society (T21RS) is the premier scientific organization for researchers and clinicians studying Down syndrome. The Third International Conference of T21RS, held June 6-9, 2019, in Barcelona, Spain, brought together 429 scientists, families, and industry representatives to share the latest discoveries on underlying cellular and molecular mechanisms of T21, define cognitive and behavioral challenges and better understand comorbidities associated with Down syndrome, including Alzheimer's disease and leukemia. Presentation of cutting-edge results in neuroscience, neurology, model systems, psychology, cancer, biomarkers and molecular and phar-ma-cological therapeutic approaches demonstrate the compelling interest and continuing advancement in all aspects of understanding and ameliorating conditions associated with T21.

11.
Sci Rep ; 11(1): 6300, 2021 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-33737521

RESUMO

Neurogenesis impairment is a key determinant of intellectual disability in Down syndrome (DS), a genetic pathology due to triplication of chromosome 21. Since neurogenesis ceases after birth, apart in the hippocampus and olfactory bulb, the only means to tackle the problem of neurogenesis impairment in DS at its root is to intervene during gestation. A few studies in DS mouse models show that this is possible, although the drugs used may raise caveats in terms of safety. We previously found that neonatal treatment with 7,8-dihydroxyflavone (7,8-DHF), a flavonoid present in plants, restores hippocampal neurogenesis in the Ts65Dn model of DS. The goal of the current study was to establish whether prenatal treatment with 7,8-DHF improves/restores overall brain proliferation potency. Pregnant Ts65Dn females received 7,8-DHF from embryonic day 10 until delivery. On postnatal day 2 (P2) the pups were injected with BrdU and were killed after either 2 h or 52-60 days (P52-60). Evaluation of the number of proliferating (BrdU+) cells in various forebrain neurogenic niches of P2 mice showed that in treated Ts65Dn mice proliferation potency was improved or even restored in most of the examined regions, including the hippocampus. Quantification of the surviving BrdU+ cells in the dentate gyrus of P52-60 mice showed no difference between treated and untreated Ts65Dn mice. At P52-60, however, treated Ts65Dn mice exhibited a larger number of granule cells in comparison with their untreated counterparts, although their number did not reach that of euploid mice. Results show that 7,8-DHF has a widespread impact on prenatal proliferation potency in Ts65Dn mice and exerts mild long-term effects. It remains to be established whether treatment extending into the neonatal period can lead to an improvement in brain development that is retained in adulthood.


Assuntos
Encéfalo/metabolismo , Proliferação de Células/efeitos dos fármacos , Síndrome de Down/tratamento farmacológico , Síndrome de Down/metabolismo , Flavonas/administração & dosagem , Neurônios/metabolismo , Cuidado Pré-Natal/métodos , Animais , Animais Recém-Nascidos , Encéfalo/efeitos dos fármacos , Encéfalo/embriologia , Encéfalo/patologia , Bromodesoxiuridina/administração & dosagem , Modelos Animais de Doenças , Síndrome de Down/embriologia , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mitose/efeitos dos fármacos , Neurogênese/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Gravidez , Resultado do Tratamento
12.
Hippocampus ; 31(4): 435-447, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33464704

RESUMO

Down syndrome (DS), a genetic condition caused by triplication of chromosome 21, is characterized by alterations in various cognitive domains, including hippocampus-dependent memory functions, starting from early life stages. The major causes of intellectual disability in DS are prenatal neurogenesis alterations followed by impairment of dendritic development in early infancy. While there is evidence that the Ts65Dn mouse, the most widely used model of DS, exhibits dendritic alterations in adulthood, no studies are available regarding the onset of dendritic pathology. The goal of the current study was to establish whether this model exhibits early dendritic alterations in the hippocampus, a region whose function is severely damaged in DS. To this purpose, in Golgi-stained brains, we evaluated the dendritic arborization and dendritic spines of the granule cells of the hippocampal dentate gyrus in Ts65Dn mice aged 8 (P8) and 15 (P15) days. While P15 Ts65Dn mice exhibited a notably hypotrophic dendritic arbor and a reduced spine density, P8 mice exhibited a moderate reduction in the number of dendritic ramifications and no differences in spine density in comparison with their euploid counterparts. Both in P8 and P15 mice, spines were longer and had a longer neck, suggesting possible alterations in synaptic function. Moreover, P8 and P15 Ts65Dn mice had more thin spines and fewer stubby spines in comparison with euploid mice. Our study provides novel evidence on the onset of dendritic pathology, one of the causes of intellectual disability in DS, showing that it is already detectable in the dentate gyrus of Ts65Dn pups. This evidence strengthens the suitability of this model of DS as a tool to study dendritic pathology in DS and to test the efficacy of early therapeutic interventions aimed at ameliorating hippocampal development and, therefore, memory functions in children with DS.


Assuntos
Síndrome de Down , Animais , Modelos Animais de Doenças , Hipocampo/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neurogênese
13.
Antioxidants (Basel) ; 11(1)2021 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-35052567

RESUMO

Down syndrome (DS), a major genetic cause of intellectual disability, is characterized by numerous neurodevelopmental defects. Previous in vitro studies highlighted a relationship between bioenergetic dysfunction and reduced neurogenesis in progenitor cells from the Ts65Dn mouse model of DS, suggesting a critical role of mitochondrial dysfunction in neurodevelopmental alterations in DS. Recent in vivo studies in Ts65Dn mice showed that neonatal supplementation (Days P3-P15) with the polyphenol 7,8-dihydroxyflavone (7,8-DHF) fully restored hippocampal neurogenesis. The current study was aimed to establish whether brain mitochondrial bioenergetic defects are already present in Ts65Dn pups and whether early treatment with 7,8-DHF positively impacts on mitochondrial function. In the brain and cerebellum of P3 and P15 Ts65Dn pups we found a strong impairment in the oxidative phosphorylation apparatus, resulting in a deficit in mitochondrial ATP production and ATP content. Administration of 7,8-DHF (dose: 5 mg/kg/day) during Days P3-P15 fully restored bioenergetic dysfunction in Ts65Dn mice, reduced the levels of oxygen radicals and reinstated the hippocampal levels of PGC-1α. No pharmacotherapy is available for DS. From current findings, 7,8-DHF emerges as a treatment with a good translational potential for improving mitochondrial bioenergetics and, thus, mitochondria-linked neurodevelopmental alterations in DS.

14.
J Nutr ; 150(9): 2478-2489, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32729926

RESUMO

BACKGROUND: The cognitive dysfunction in Down syndrome (DS) is partially caused by deficient neurogenesis during fetal stages. Curcumin enhances neurogenesis and learning and memory. OBJECTIVES: We aimed to test the ability of curcumin to rescue the neuromorphological and cognitive alterations of the Ts65Dn (TS) mouse model of DS when administered prenatally or during early postnatal stages, and to evaluate whether these effects were maintained several weeks after the treatment. METHODS: To evaluate the effects of prenatal curcumin administration, 65 pregnant TS females were subcutaneously treated with curcumin (300 mg/kg) or vehicle from ED (Embryonic Day) 10 to PD (Postnatal Day) 2. All the analyses were performed on their TS and Control (CO) male and female progeny. At PD2, the changes in neurogenesis, cellularity, and brain weight were analyzed in 30 TS and CO pups. The long-term effects of prenatal curcumin were evaluated in another cohort of 44 TS and CO mice between PD30 and PD45. The neuromorphological effects of the early postnatal administration of curcumin were assessed on PD15 in 30 male and female TS and CO pups treated with curcumin (300 mg/kg) or vehicle from PD2 to PD15. The long-term neuromorphological and cognitive effects were assessed from PD60 to PD90 in 45 mice. Data was compared by ANOVAs. RESULTS: Prenatal administration of curcumin increased the brain weight (+45%, P < 0.001), the density of BrdU (bromodeoxyuridine)- (+150%, P < 0.001) and DAPI (4',6-diamidino-2-phenylindole)- (+38%, P = 0.005) positive cells, and produced a long-term improvement of cognition in TS (+35%, P = 0.007) mice with respect to vehicle-treated mice. Postnatal administration of curcumin did not rescue any of the short- or long-term altered phenotypes of TS mice. CONCLUSION: The beneficial effects of prenatal curcumin administration to TS mice suggest that it could be a therapeutic strategy to treat DS cognitive disabilities.


Assuntos
Encéfalo/crescimento & desenvolvimento , Cognição/efeitos dos fármacos , Curcumina/farmacologia , Síndrome de Down/tratamento farmacológico , Neurogênese/efeitos dos fármacos , Ração Animal/análise , Animais , Encéfalo/efeitos dos fármacos , Curcumina/administração & dosagem , Dieta/veterinária , Esquema de Medicação , Feminino , Injeções Subcutâneas , Masculino , Camundongos , Camundongos Transgênicos , Gravidez , Efeitos Tardios da Exposição Pré-Natal
15.
Clin Neurol Neurosurg ; 194: 105870, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32480293

RESUMO

OBJECTIVES: Down syndrome (DS) is a genetic condition characterized by cognitive disability starting from infancy. Children with DS exhibit deficits in several cognitive domains, including executive function, i.e., a set of cognitive processes that heavily depend on higher-order thalamic nuclei. The goal of this study was to establish whether executive function-related thalamic nuclei of fetuses with DS exhibit neuroanatomical alterations that may contribute to the defects in higher-order control processes seen in children with DS. PATIENTS AND METHODS: In brain sections from fetuses with DS and control fetuses (gestational week 17-22), we evaluated the cellularity in the mediodorsal nucleus (MD), the centromedian nucleus (CM), and the parafascicular nucleus (PF) of the thalamus and the density of proliferating cells in the third ventricle. RESULTS: We found that all three nuclei had a notably reduced cell density. This defect was associated with a reduced density of proliferating cells in the third ventricle, suggesting that the reduced cellularity in the MD, CM, and PF of fetuses with DS was due to neurogenesis impairment. The separate evaluation of projection neurons and interneurons in the MD, CM, and PF showed that in fetuses with DS the density of projection neurons was reduced, with no changes in interneuron density. CONCLUSION: This study provides novel evidence for DS-linked cellularity alterations in the MD, CM, and PF and suggests that altered signal processing in these nuclei may be involved in the impairment in higher-order control processes observed in individuals with DS starting from infancy.


Assuntos
Síndrome de Down/patologia , Feto/patologia , Núcleos Talâmicos/patologia , Adulto , Apoptose , Contagem de Células , Proliferação de Células , Feminino , Idade Gestacional , Humanos , Interneurônios/patologia , Núcleos Intralaminares do Tálamo/patologia , Núcleo Mediodorsal do Tálamo/patologia , Neuroglia/patologia , Neurônios/patologia , Gravidez , Terceiro Ventrículo/patologia
16.
Neurobiol Dis ; 140: 104874, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32325119

RESUMO

Down syndrome (DS), a neurodevelopmental disorder caused by triplication of chromosome 21, is characterized by intellectual disability. In DS, defective neurogenesis causes an overall reduction in the number of neurons populating the brain and defective neuron maturation causes dendritic hypotrophy and reduction in the density of dendritic spines. No effective therapy currently exists for the improvement of brain development in individuals with DS. Drug repurposing is a strategy for identifying new medical use for approved drugs. A drug screening campaign showed that the ß2-adrenergic receptor (ß2-AR) agonists clenbuterol hydrochloride (CLEN) and salmeterol xinafoate (SALM) increase the proliferation rate of neural progenitor cells from the Ts65Dn model of DS. The goal of the current study was to establish their efficacy in vivo, in the Ts65Dn model. We found that, at variance with the in vitro experiments, treatment with CLEN or SALM did not restore neurogenesis in the hippocampus of Ts65Dn mice treated during the postnatal (P) period P3-P15. In Ts65Dn mice treated with CLEN or SALM, however, dendritic spine density and dendritic arborization of the hippocampal granule cells were restored and the lowest dose tested here (0.01 mg/kg/day) was sufficient to elicit these effects. CLEN and SALM are used in children as therapy for asthma and, importantly, they pass the blood-brain barrier. Our study suggests that treatment with these ß2-AR agonists may be a therapy of choice in order to correct dendritic development in DS but is not suitable to rescue neurogenesis.


Assuntos
Agonistas de Receptores Adrenérgicos beta 2/uso terapêutico , Clembuterol/uso terapêutico , Giro Denteado/efeitos dos fármacos , Síndrome de Down/tratamento farmacológico , Xinafoato de Salmeterol/uso terapêutico , Animais , Animais Recém-Nascidos , Modelos Animais de Doenças , Feminino , Hipocampo/efeitos dos fármacos , Masculino , Camundongos , Camundongos Transgênicos , Neurogênese/efeitos dos fármacos , Neurônios/efeitos dos fármacos
17.
J Nutr ; 150(6): 1631-1643, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32243527

RESUMO

BACKGROUND: The cognitive impairments that characterize Down syndrome (DS) have been attributed to brain hypocellularity due to neurogenesis impairment during fetal stages. Thus, enhancing prenatal neurogenesis in DS could prevent or reduce some of the neuromorphological and cognitive defects found in postnatal stages. OBJECTIVES: As fatty acids play a fundamental role in morphogenesis and brain development during fetal stages, in this study, we aimed to enhance neurogenesis and the cognitive abilities of the Ts65Dn (TS) mouse model of DS by administering oleic or linolenic acid. METHODS: In total, 85 pregnant TS females were subcutaneously treated from Embryonic Day (ED) 10 until Postnatal Day (PD) 2 with oleic acid (400 mg/kg), linolenic acid (500 mg/kg), or vehicle. All analyses were performed on their TS and Control (CO) male and female progeny. At PD2, we evaluated the short-term effects of the treatments on neurogenesis, cellularity, and brain weight, in 40 TS and CO pups. A total of 69 TS and CO mice were used to test the long-term effects of the prenatal treatments on cognition from PD30 to PD45, and on neurogenesis, cellularity, and synaptic markers, at PD45. Data were compared by ANOVAs. RESULTS: Prenatal administration of oleic or linolenic acid increased the brain weight (+36.7% and +45%, P < 0.01), the density of BrdU (bromodeoxyuridine)- (+80% and +115%; P < 0.01), and DAPI (4',6-diamidino-2-phenylindole)-positive cells (+64% and +22%, P < 0.05) of PD2 TS mice with respect to the vehicle-treated TS mice. Between PD30 and PD45, TS mice prenatally treated with oleic or linolenic acid showed better cognitive abilities (+28% and +25%, P < 0.01) and a higher density of the postsynaptic marker PSD95 (postsynaptic density protein 95) (+65% and +44%, P < 0.05) than the vehicle-treated TS animals. CONCLUSION: The beneficial cognitive and neuromorphological effects induced by oleic or linolenic acid in TS mice suggest that they could be promising pharmacotherapies for DS-associated cognitive deficits.


Assuntos
Síndrome de Down/fisiopatologia , Exposição Materna , Ácido Oleico/administração & dosagem , Ácido alfa-Linolênico/administração & dosagem , Animais , Peso Corporal/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Cognição/efeitos dos fármacos , Modelos Animais de Doenças , Síndrome de Down/patologia , Feminino , Camundongos , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neurogênese/efeitos dos fármacos , Ácido Oleico/farmacologia , Tamanho do Órgão/efeitos dos fármacos , Gravidez , Efeitos Tardios da Exposição Pré-Natal , Ácido alfa-Linolênico/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...