Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 755(Pt 2): 142539, 2021 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-33045601

RESUMO

For climate models that use paleo-environment data to predict future climate change, tree-ring isotope variations are one important archive for the reconstruction of paleo-hydrological conditions. Due to the rather complicated pathway of water, starting from precipitation until its uptake by trees and the final incorporation of its components into tree-ring cellulose, a closer inspection of seasonal variations of tree water uptake is important. In this study, branch and needle samples of two pine species (Pinus pinaster and Pinus nigra subsp. laricio) and several water compartments (precipitation, creek, soil) were sampled over a two-year period and analyzed for the temporal variations of their oxygen and hydrogen stable isotope ratios (δ18O and δ2H) at five sites over an elevation gradient from sea level to around 1600 m a.s.l. on the Mediterranean island of Corsica (France). A new model was established to disentangle temporal relationships of source water uptake of trees. It uses a calculation method that incorporates the two processes mostly expected to affect source water composition: mixing of waters and evaporation. The model results showed that the temporal offset from precipitation to water uptake is not constant and varies with elevation and season. Overall, seasonal source water origin was shown to be dominated by precipitation from autumn and spring. While autumn precipitation was a more important water source for trees growing at mid- (~800-1000 m a.s.l) and high-elevation (~1600 m a.s.l.) sites, trees at coastal sites mostly took up water from late winter and spring. These findings show that predicted decreases in precipitation amounts during the wet season in the Mediterranean can have strong impacts on water availability for pine trees, especially at higher elevations.


Assuntos
Pinus , França , Isótopos de Oxigênio , Estações do Ano , Árvores , Água
2.
Sci Total Environ ; 713: 136715, 2020 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-32019047

RESUMO

Rapid depletion of aquifers in semiarid and arid regions threatens water security. This holds true especially in emerging countries where insufficient knowledge about aquifer systems precludes the implementation of advanced management measures, such as managed aquifer recharge. This study deals with the generation of baseline knowledge for the assessment of aquifers in arid and semiarid regions where artificial recharge with reclaimed water gains increasing impetus. The Guadalupe aquifer in Baja California provides water to 57% of the Mexican wine industry. Recent plans foresee a partial replenishment of its depleted groundwater reserves by transferring treated waste water from the Mexico-USA border for irrigation. The aquifer demonstrated to have a rapid response by rising the water table of about +20 m in relation to natural recharge under an intense rainfall period of 236 mm. Two predominant recharge sources were identified based on a geochemical multi-tracer approach: (a) water of modern age (<5 yr, >1.8 TU) and mixed water of recent-submodern age (3H 0.8-1.8 TU), and (b) sub-modern waters that were recharged before 1952 (3H < 0.5 TU). Water of the first type originate in the main Guadalupe stream, which has a more depleted average δ18O isotope value (-7.8‰) than average local rainwater (-2.0‰). The stream water initially has a Na-HCO3 composition and recharges the entire Calafia zone and most groundwater along the riverbed across the valley. Water of the second type is mostly derived from hill-slope groundwater that has a stable isotope composition of mixed local rainwater and a NaCl composition. High total dissolved solids >2 g l-1 together with enriched NO3- and Se concentrations characterize groundwater in the downstream the Porvenir zone. The geochemical age of this older, hill-slope groundwater suggests that its replenishment takes at least several decades when it becomes exhausted.

3.
Sci Total Environ ; 657: 1311-1322, 2019 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-30677898

RESUMO

The high-relief catchment of the Tavignanu River (Corsica Island, France) with an elevation range from sea level to 2622 m above sea level was investigated for its riverine carbon budget and stable carbon isotopes. Major riverine dissolved inorganic carbon (DIC or TCO2) sources depended on seasons and sub-catchment lithology. In winter δ13CDIC values of -2 to -7‰ (VPDB) indicated influences of atmospheric CO2. δ13CDIC values decreased gradually to values between -9 and -12‰ in July, which indicates elevated soil CO2 contribution. An observed downstream increase in the total amount of carbon species correlated with inputs from carbonate bearing tributaries and evaporation effects in summer. Main channel partial pressure of CO2 (pCO2) was seasonally highly variable in the upper silicate catchment and the lower coastal plain, where summer values exceed up to six times atmospheric levels. During winter, the central section of the Tavignanu River was found to be undersaturated with respect to atmospheric CO2 levels. The median values for main channel pCO2 were below atmospheric levels in winter and spring and above in summer and autumn. The annual carbon flux across the air-water boundary (FCO2) along the Tavignanu River was calculated with (0.77 ±â€¯0.24) Gg C yr-1, which is about seven times higher than the riverine TCO2 transport to the sea of about 0.11 Gg C yr-1. While large sections of the river experienced year-round atmospheric CO2 uptake or equilibrium, the river as a whole was a small but continuous net source of carbon to the atmosphere. This underlines the important, but so far not well-constrained, contributions of smaller streams and rivers to the terrestrial carbon flux and the need of incorporating them into future global carbon cycle models.

4.
Sci Total Environ ; 598: 1037-1049, 2017 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-28476077

RESUMO

The granitic Uhlirska headwater catchment with a size of 1.78km2 is located in the Jizera Mountains in the northern Czech Republic and received among the highest inputs of anthropogenic acid depositions in Europe. An analysis of sulphate (SO42-) distribution in deposition, soil water, stream water and groundwater compartments allowed to establish a SO42- mass-balance (deposition input minus surface water export) and helped to evaluate which changes occurred since the last evaluation of the catchment in 1997. The determined SO42- concentrations decreased in the following order: wetland groundwater>groundwater from 20m below ground level (bgl)>groundwater from 30m bgl>stream water>groundwater from10m bgl>hillslope soil water>wetland soil water>bulk deposition with median values of 0.24, 0.21, 0.17, 0.15, 0.11, 0.07, 0.03 and 0.01mmolL-1, respectively. Our results show that average deposition reductions of 62% did not result in equal changes of the sulphate mass-balance, which changed by only 47%. This difference occurs because sulphate originates from internal sources such as the groundwater and soil water. The Uhlirska catchment is subject to delayed recovery from anthropogenic acid depositions and remains a net source of stored sulphur even after three decades of declining inputs. The wetland groundwater and soil water provide environmental memories of legacy pollutant sulphate. Elevated stream water sulphate concentrations after the unusually dry summer 2015 imply importance of weather and climate patterns for future recovery from acidification.

5.
Sci Total Environ ; 542(Pt A): 586-90, 2016 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-26544887

RESUMO

For the first time in history, water was intentionally released for environmental purposes into the final, otherwise dry, 160-km stretch of the Colorado River basin, south of the Mexican border. Between March and May 2014 three pulses of water with a total volume of 132×10(6) m(3) were released to assess the restoration potential of endemic flora along its course and to reach its estuary. The latter had not received a sustained input of fresh water and nutrients from its main fluvial source for over 50 years because of numerous upstream dam constructions. During this pulse flow large amounts of water were lost and negligible amounts reached the ocean. While some of these water losses can be attributed to plant uptake and infiltration, we were able to quantify evaporation losses between 16.1 to 17.3% of the original water mass % within the first 80 km after the Morels Dam with water stable isotope data. Our results showed no evidence for freshwater reaching the upper Colorado River estuary and it is assumed that the pulse flow had only negligible influences on the coastal ecosystem. Future water releases that aim on ecological restoration need to become more frequent and should have larger volumes if more significant effects are to be established on the area.

6.
Sci Total Environ ; 512-513: 185-193, 2015 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-25617998

RESUMO

A study on dissolved nitrate, ammonium, phosphate and silicate concentrations was carried out in various water compartments (rivers, drains, channels, springs, wetland, groundwater, tidal floodplains and ocean water) in the Mexicali Valley and the Colorado River delta between 2012 and 2013, to assess modern potential nutrient sources into the marine system after river damming. While nitrate and silicate appear to have a significant input into the coastal ocean, phosphate is rapidly transformed into a particulate phase. Nitrate is, in general, rapidly bio-consumed in the surface waters rich in micro algae, but its excess (up to 2.02 mg L(-1) of N from NO3 in winter) in the Santa Clara Wetland represents a potential average annual source to the coast of 59.4×10(3)kg N-NO3. Despite such localized inputs, continuous regional groundwater flow does not appear to be a source of nitrate to the estuary and coastal ocean. Silicate is associated with groundwaters that are also geothermally influenced. A silicate receiving agricultural drain adjacent to the tidal floodplain had maximum silicate concentrations of 16.1 mg L(-1) Si-SiO2. Seepage of drain water and/or mixing with seawater during high spring tides represents a potential source of dissolved silicate and nitrate into the Gulf of California.


Assuntos
Monitoramento Ambiental , Nitrogênio/análise , Fósforo/análise , Dióxido de Silício/análise , Poluentes Químicos da Água/análise , Colorado , Água Subterrânea/química , México , Rios/química
7.
Rapid Commun Mass Spectrom ; 28(15): 1691-6, 2014 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-24975249

RESUMO

RATIONALE: Literature data on experimentally derived equilibrium stable carbon isotope fractionation (10(3) lnα(13) C) between H2 CO3 (*) (H2 CO3 + CO2(aq) ) and gaseous CO2 (CO2(g) ) are so far only available up to 60 °C and were typically determined at or near atmospheric pressures. Here we experimentally expand this dataset to temperature and pressure conditions close to the supercritical state for CO2 . The objective is to improve the applicability of stable carbon isotopes as a tracer in environments where such conditions prevail. METHODS: Eighteen stable carbon isotope laboratory experiments were conducted in a steel vessel. Deionised water that was acidified with hydrochloric acid (HCl, 1 N) to a pH of 2.4 was equilibrated with CO2(g) at pressures (pCO2 ) of 55 bar for durations between 2 and 188 h. The experiments were conducted at 20, 60, 80, 100 and 120 °C. H2 CO3 (*) and CO2(g) were sampled separately and their carbon isotope ratios were determined by isotope ratio mass spectrometry. RESULTS: At 20 °C, average 10(3) lnα(13) CH2CO3 * -CO2(g) values of -1.0 ± 0.1 ‰ were observed with a preference for (12) C in H2 CO3 (*) consistent with previous research. At elevated temperatures of 120 °C, 10(3) lnα(13) CH2CO3 * -CO2(g) values decreased to an average value of -0.7 ± 0.1 ‰. The resulting temperature dependence for carbon isotope fractionation between H2 CO3 (*) and CO2(g) was 10(3) lnα(13) CH2CO3 * -CO2(g) = (0.0025 ± 0.0004) T(°C) - (1.0 ± 0.03) ‰. Carbon isotope equilibrium between H2 CO3 (*) and CO2(g) was reached within reaction times of 18 h and mostly within 5 h or less. CONCLUSIONS: 10(3) lnα(13) CH2CO3 * -CO2(g) data are now available for temperatures up to 120 °C and for pressures of up to 55 bar. The results suggest that higher pCO2 levels possibly shorten carbon isotope equilibration times. These data are critically important for using δ(13) C values as tracers, for instance at geological CO2 sequestration sites and corresponding natural analogues.


Assuntos
Dióxido de Carbono/química , Isótopos de Carbono/química , Fracionamento Químico/métodos , Espectrometria de Massas/métodos , Isótopos de Carbono/análise , Pressão , Temperatura
8.
Sci Total Environ ; 466-467: 16-25, 2014 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-23892019

RESUMO

The suitability of acesulfame to trace wastewater-related surface water fluxes from streams into the hyporheic and riparian zones over long-term periods was investigated. The transport behavior of acesulfame was compared with the transport of water stable isotopes (δ(18)O or δ(2)H). A calibrated model based on a joint inversion of temperature, acesulfame, and piezometric pressure heads was employed in a model validation using data sets of acesulfame and water stable isotopes collected over 5months in a stream and groundwater. The spatial distribution of fresh water within the groundwater resulting from surface water infiltration was estimated by computing groundwater ages and compared with the predicted acesulfame plume obtained after 153day simulation time. Both, surface water ratios calculated with a mixing equation from water stable isotopes and simulated acesulfame mass fluxes, were investigated for their ability to estimate the contribution of wastewater-related surface water inflow within groundwater. The results of this study point to limitations for the application of acesulfame to trace surface water-groundwater interactions properly. Acesulfame completely missed the wastewater-related surface water volumes that still remained in the hyporheic zone under stream-gaining conditions. In contrast, under stream-losing conditions, which developed after periods of stagnating hydraulic exchange, acesulfame based predictions lead to an overestimation of the surface water volume of up to 25% in the riparian zone. If slow seepage velocities prevail a proportion of acesulfame might be stored in smaller pores, while when released under fast flowing water conditions it will travel further downstream with the groundwater flow direction. Therefore, under such conditions acesulfame can be a less-ideal tracer in the hyporheic and riparian zones and additional monitoring with other environmental tracers such as water stable isotopes is highly recommended.

9.
Environ Pollut ; 157(12): 3336-46, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19604610

RESUMO

In many densely populated areas, riverine floodplains have been strongly impacted and degraded by river channelization and flood protection dikes. Floodplains act as buffers for flood water and as filters for nutrients and pollutants carried with river water and sediment from upstream source areas. Based on results of the EU-funded "AquaTerra" project (2004-2009), we analyze changes in the dynamics of European river-floodplain systems over different temporal scales and assess their effects on contaminant behaviour and ecosystem functioning. We find that human-induced changes in the hydrologic regime of rivers have direct and severe consequences on nutrient cycling and contaminant retention in adjacent floodplains. We point out the complex interactions of contaminants with nutrient availability and other physico-chemical characteristics (pH, organic matter) in determining ecotoxicity and habitat quality, and draw conclusions for improved floodplain management.


Assuntos
Sedimentos Geológicos/química , Poluentes Químicos da Água/química , Monitoramento Ambiental , Europa (Continente) , Inundações , Atividades Humanas , Humanos , Rios/química
10.
Sci Total Environ ; 376(1-3): 40-50, 2007 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-17307233

RESUMO

Deposition, turnover and movement of persistent organic pollutants (POP) were investigated in the EU integrated project "AquaTerra", which is among the first funded environmental projects within the 6th Framework Program by the European Commission. Project work integrates across various disciplines that range from biogeochemistry, environmental engineering, computer modelling and chemistry to socio-economic sciences. Field study areas are the river basins of the Ebro, the Meuse, the Elbe and the Danube as well as the 3-km(2) French catchment of the Brévilles Spring. Within the first 2 years of the project more than 1700 samples of atmospherically deposited particles, sediments, and water have been collected in the above-mentioned systems. Results show clear spatial patterns of deposition of polyaromatic hydrocarbons (PAHs) with the highest rates in the Meuse Basin. For local inputs, in the Brévilles sandy aquifer, the contamination of the groundwater by the pesticides atrazine (AT) and deethylatrazine did not decrease even 5 years after their agricultural inputs were stopped. On the other hand, herbicides such as mecroprop (MCPP), and PAHs, were at least partially degraded microbiologically in laboratory studies with soils and aquifer material from selected sites. For sediment transport of contaminants, new flood sampling techniques revealed highest deposition rates of beta-hexachlorocyclohexane (beta-HCH) in river sediments at hotspot areas on the Mulde River in the Bitterfeld region (Elbe Basin, Germany). These selected preliminary results of AquaTerra help to improve fundamental understanding of persistent organic pollutants (POP) in the environment.


Assuntos
Poluentes Atmosféricos/análise , Poluentes Químicos da Água/análise , Atrazina/análogos & derivados , Atrazina/análise , Monitoramento Ambiental , União Europeia , França , Sedimentos Geológicos/análise , Alemanha , Herbicidas/análise , Hexaclorocicloexano/análise , Inseticidas/análise , Hidrocarbonetos Policíclicos Aromáticos/análise , Rios/química , Triazinas/análise , Abastecimento de Água/análise
11.
J Environ Manage ; 84(2): 237-43, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17166649

RESUMO

The integrated project "AquaTerra" with the full title "integrated modeling of the river-sediment-soil-groundwater system; advanced tools for the management of catchment areas and river basins in the context of global change" is among the first environmental projects within the sixth Framework Program of the European Union. Commencing in June 2004, it brought together a multidisciplinary team of 45 partner organizations from 12 EU countries, Romania, Switzerland, Serbia and Montenegro. AquaTerra is an ambitious project with the primary objective of laying the foundations for a better understanding of the behavior of environmental pollutants and their fluxes in the soil-sediment-water system with respect to climate and land use changes. The project performs research as well as modeling on river-sediment-soil-groundwater systems through quantification of deposition, sorption and turnover rates and the development of numerical models to reveal fluxes and trends in soil and sediment functioning. Scales ranging from the laboratory to river basins are addressed with the potential to provide improved river basin management, enhanced soil and groundwater monitoring as well as the early identification and forecasting of impacts on water quantity and quality. Study areas are the catchments of the Ebro, Meuse, Elbe and Danube Rivers and the Brévilles Spring. Here we outline the general structure of the project and the activities conducted within eleven existing sub-projects of AquaTerra.


Assuntos
Monitoramento Ambiental , Sedimentos Geológicos/análise , Rios/química , Poluentes do Solo/análise , Poluentes Químicos da Água/análise , Clima , União Europeia , Sedimentos Geológicos/química , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...