Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Funct Biomater ; 15(2)2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38391887

RESUMO

Besides the need for biomaterial surface modification to improve cellular attachment, laser-structuring is favorable for designing a new surface topography for external bone fixator pins or implants. The principle of this study was to observe how bioinspired (deer antler) laser-induced nano-microstructures influenced the adhesion and growth of skin cells. The goal was to create pins that allow the skin to attach to the biomaterial surface in a bacteria-proof manner. Therefore, typical fixator metals, steel, and titanium alloy were structured using ultrashort laser pulses, which resulted in periodical nano- and microstructures. Surface characteristics were investigated using a laser scanning microscope and static water contact angle measurements. In vitro studies with human HaCaT keratinocytes focused on cell adhesion, morphology, actin formation, and growth within 7 days. The study showed that surface functionalization influenced cell attachment, spreading, and proliferation. Micro-dimple clusters on polished bulk metals (DC20) will not hinder viability. Still, they will not promote the initial adhesion and spreading of HaCaTs. In contrast, additional nanostructuring with laser-induced periodic surface structures (LIPSS) promotes cell behavior. DC20 + LIPSS induced enhanced cell attachment with well-spread cell morphology. Thus, the bioinspired structures exhibited a benefit in initial cell adhesion. Laser surface functionalization opens up new possibilities for structuring, and is relevant to developing bioactive implants in regenerative medicine.

2.
Eur J Trauma Emerg Surg ; 48(5): 3541-3560, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35305114

RESUMO

PURPOSE: Optimal anatomical reduction and stable fixation of acetabular fractures are important in avoiding secondary dislocation and osteoarthritis. Biomechanical studies of treatment options of acetabular fractures aim to evaluate the biomechanical properties of different fixation methods. As the setup of the biomechanical test can influence the experimental results, this review aimed to analyze the characteristics, comparability and clinical implications of studies on biomechanical test setups and finite element analyses in the fixation of acetabular fractures. METHODS: A systematic literature research was conducted according to the PRISMA guidelines, using the PubMed/MEDLINE and Web of Science databases. 44 studies conducting biomechanical analyses of fixation of acetabular fractures were identified, which met the predefined inclusion and exclusion criteria and which were published in English between 2000 and April 16, 2021. The studies were analyzed with respect to distinct parameters, including fracture type, material of pelvis model, investigated fixation construct, loading direction, loading protocol, maximum loading force, outcome parameter and measurement method. RESULTS: In summary, there was no standardized test setup within the studies on fixation constructs for acetabular fractures. It is therefore difficult to compare the studies directly, as they employ a variety of different test parameters. Furthermore, the clinical implications of the biomechanical studies should be scrutinized, since several test parameters were not based on observations of the human physiology. CONCLUSION: The limited comparability and restricted clinical implications should be kept in mind when interpreting the results of biomechanical studies and when designing test setups to evaluate fixation methods for acetabular fractures.


Assuntos
Fraturas Ósseas , Fraturas do Quadril , Fraturas da Coluna Vertebral , Acetábulo/lesões , Acetábulo/cirurgia , Fenômenos Biomecânicos , Placas Ósseas , Parafusos Ósseos , Fixação Interna de Fraturas/métodos , Fraturas Ósseas/cirurgia , Humanos
3.
Biomed Tech (Berl) ; 67(1): 43-52, 2022 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-34995435

RESUMO

This study has the aim to investigate the strain and stress in an anterolateral locking plate applied for the fixation of a lateral split fracture. To simulate a complex fracture situation, three segments were separated. With a FEM analysis, representative places for strain and stress measurement were determined. A locked osteosynthesis plate was instrumented with strain gauges and tested on a fractured and a non-fractured Saw Bone model. To simulate different loading situations, four different points of force application, from the center of the condyles to a 15 mm posterior position, were used with a medial-lateral load distribution of 60:40. The simulations as well as the biomechanical tests demonstrated that two deformations dominate the load on the plate: a bending into posterior direction and a bulging of the plate head. Shifting the point of application to the posterior direction resulted in increasing maximum stress, from 1.16 to 6.32 MPa (FEM analysis) and from 3.04 to 7.00 MPa (biomechanical study), respectively. Furthermore, the comparison of the non-fractured and fractured models showed an increase in maximum stress by the factor 2.06-2.2 (biomechanical investigation) and 1.5-3.3 (FEM analysis), respectively.


Assuntos
Tíbia , Fraturas da Tíbia , Fenômenos Biomecânicos , Placas Ósseas , Fixação Interna de Fraturas , Humanos , Fraturas da Tíbia/cirurgia
4.
Annu Int Conf IEEE Eng Med Biol Soc ; 2019: 6485-6489, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31947327

RESUMO

The impedance profile of the human PC-3 and DU 145 prostate cancer cells were recorded and compared using Electrical Impedance Spectroscopy. Cells were measured in a special chamber using a four terminal setup to avoid parasitic effects of electrode polarization in low frequencies. Our results show that the two cancer cell lines are readily distinguishable by their impedance spectrum. As PC-3 cells have been shown to be spontaneously metastatic in previous xenograft experiments while DU 145 cells were non-metastatic, Electrical Impedance Spectroscopy has the potential to be developed into a simple diagnostic tool to distinguish metastatic from non-metastatic cells.


Assuntos
Espectroscopia Dielétrica , Neoplasias da Próstata , Linhagem Celular Tumoral , Impedância Elétrica , Humanos , Masculino , Células PC-3
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...