Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Technol ; 58(28): 12621-12632, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-38954776

RESUMO

The majority of microplastics (MPs) found in the environment originate from plastic fragmentation occurring in the environment and are influenced by environmental factors such as UV irradiation and biotic interactions. However, the effects of river drying on plastic fragmentation remain unknown, despite the global prevalence of watercourses experiencing flow intermittence. This study investigates, through laboratory experiments, the coupled effects of drying duration and UV irradiation on PVC film fragmentation induced by artificial mechanical abrasion. This study shows that PVC film fragmentation increases with drying duration through an increase in the abundance and size of formed MPs as well as mass loss from the initial plastic item, with significant differences for drying durations >50% of the experiment duration. The average abundance of formed MPs in treatments exposed to severe drying duration was almost two times higher than in treatments nonexposed to drying. Based on these results, we developed as a proof of concept an Intermittence-Based Plastic Fragmentation Index that may provide insights into plastic fragmentation occurring in river catchments experiencing large hydrological variability. The present study suggests that flow intermittence occurring in rivers and streams can lead to increasing plastic fragmentation, unraveling new insights into plastic pollution in freshwater systems.


Assuntos
Microplásticos , Cloreto de Polivinila , Rios , Rios/química , Cloreto de Polivinila/química , Poluentes Químicos da Água , Raios Ultravioleta , Monitoramento Ambiental , Dessecação
2.
MethodsX ; 12: 102540, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38268517

RESUMO

Recent studies on the distribution of microplastics in aquatic sediments have deployed different methods and devices for density separation of microplastics from sediments. However, instrument specific limitations have been noted, including their high cost, difficulty in handling, or/and the potential for elevated contamination risk due to their plastic composition. This study improves existing sediment microplastic separation techniques by modifying the commonly used conical shape glass separating funnels. The modification consists in connecting a silicone tube at the base of the funnel, whose opening and closure was manually controlled by a Mohr clamp. This adjustment made to the funnels have effectively mitigated critical clogging problems frequently encountered in density separation units. An experiment was conducted using sand-based sediment spiked with polyamide fragments to validate this method modification. Following a complete extraction protocol with the modification of separating funnels, the microplastic extraction efficiency from sediments was high with a 90% recovery rate. Based on these promising results, future studies should consider naturally diverse substrates, as recovery efficiency may be sediment-dependent. Two key adjustments to the glass separation funnels:•Removal of stopcocks•Use of silicone tubes and Mohr clamps to control sediment release.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...