Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 15(9): e0239521, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32986737

RESUMO

Past claims have been made for fossil DNA recovery from various organisms (bacteria, plants, insects and mammals, including humans) dating back in time from thousands to several million years BP. However, many of these recoveries, especially those described from million-year-old amber (fossil resin), have faced criticism as being the result of modern environmental contamination and for lack of reproducibility. Using modern genomic techniques, DNA can be obtained with confidence from a variety of substrates (e.g. bones, teeth, gum, museum specimens and fossil insects) of different ages, albeit always less than one million years BP, and results can also be obtained from much older materials using palaeoproteomics. Nevertheless, new attempts to determine if ancient DNA (aDNA) is present in insects preserved in 40 000-year old sub-fossilised resin, the precursor of amber, have been unsuccessful or not well documented. Resin-embedded specimens are therefore regarded as unsuitable for genetic studies. However, we demonstrate here, for the first time, that although a labile molecule, DNA is still present in platypodine beetles (Coleoptera: Curculionidae) embedded in six-year-old and two-year-old resin pieces from Hymenaea verrucosa (Angiospermae: Fabaceae) collected in Madagascar. We describe an optimised method which meets all the requirements and precautions for aDNA experiments for our purpose: to explore the DNA preservation limits in resin. Our objective is far from starting an uncontrolled search for aDNA in amber as it was in the past, but to start resolving basic aspects from the DNA preservation in resin and search from the most modern samples to the ancient ones, step by step. We conclude that it is therefore possible to study genomics from resin-embedded organisms, although the time limits remain to be determined.


Assuntos
DNA Antigo/química , Resinas Vegetais/química , Âmbar/química , Animais , Besouros/genética , Fósseis , Hymenaea/química , Insetos/genética , Madagáscar , Reprodutibilidade dos Testes
2.
PLoS One ; 15(2): e0228843, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32101553

RESUMO

Vertebrate fossils embedded in amber represent a particularly valuable paleobiological record as amber is supposed to be a barrier to the environment, precluding significant alteration of the animals' body over geological time. The mode and processes of amber preservation are still under debate, and it is questionable to what extent original material may be preserved. Due to their high value, vertebrates in amber have never been examined with analytical methods, which means that the composition of bone tissue in amber is unknown. Here, we report our results of a study on a left forelimb from a fossil Anolis sp. indet. (Squamata) that was fully embedded in Miocene Dominican amber. Our results show a transformation of the bioapatite to fluorapatite associated with a severe alteration of the collagen phase and the formation of an unidentified carbonate. These findings argue for a poor survival potential of macromolecules in Dominican amber fossils.


Assuntos
Âmbar , Osso e Ossos/metabolismo , Fluoretação , Lagartos , Animais , Fósseis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...