Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nature ; 589(7841): 211-213, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33442039

RESUMO

Soft γ-ray repeaters exhibit bursting emission in hard X-rays and soft γ-rays. During the active phase, they emit random short (milliseconds to several seconds long), hard-X-ray bursts, with peak luminosities1 of 1036 to 1043 erg per second. Occasionally, a giant flare with an energy of around 1044 to 1046 erg is emitted2. These phenomena are thought to arise from neutron stars with extremely high magnetic fields (1014 to 1015 gauss), called magnetars1,3,4. A portion of the second-long initial pulse of a giant flare in some respects mimics short γ-ray bursts5,6, which have recently been identified as resulting from the merger of two neutron stars accompanied by gravitational-wave emission7. Two γ-ray bursts, GRB 051103 and GRB 070201, have been associated with giant flares2,8-11. Here we report observations of the γ-ray burst GRB 200415A, which we localized to a 20-square-arcmin region of the starburst galaxy NGC 253, located about 3.5 million parsecs away. The burst had a sharp, millisecond-scale hard spectrum in the initial pulse, which was followed by steady fading and softening over 0.2 seconds. The energy released (roughly 1.3 × 1046 erg) is similar to that of the superflare5,12,13 from the Galactic soft γ-ray repeater SGR 1806-20 (roughly 2.3 × 1046 erg). We argue that GRB 200415A is a giant flare from a magnetar in NGC 253.

2.
Science ; 358(6370): 1565-1570, 2017 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-29038371

RESUMO

With the first direct detection of merging black holes in 2015, the era of gravitational wave (GW) astrophysics began. A complete picture of compact object mergers, however, requires the detection of an electromagnetic (EM) counterpart. We report ultraviolet (UV) and x-ray observations by Swift and the Nuclear Spectroscopic Telescope Array of the EM counterpart of the binary neutron star merger GW170817. The bright, rapidly fading UV emission indicates a high mass (≈0.03 solar masses) wind-driven outflow with moderate electron fraction (Ye ≈ 0.27). Combined with the x-ray limits, we favor an observer viewing angle of ≈30° away from the orbital rotation axis, which avoids both obscuration from the heaviest elements in the orbital plane and a direct view of any ultrarelativistic, highly collimated ejecta (a γ-ray burst afterglow).

3.
Science ; 343(6166): 48-51, 2014 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-24263134

RESUMO

Long-duration gamma-ray bursts (GRBs) are an extremely rare outcome of the collapse of massive stars and are typically found in the distant universe. Because of its intrinsic luminosity (L ~ 3 × 10(53) ergs per second) and its relative proximity (z = 0.34), GRB 130427A reached the highest fluence observed in the γ-ray band. Here, we present a comprehensive multiwavelength view of GRB 130427A with Swift, the 2-meter Liverpool and Faulkes telescopes, and by other ground-based facilities, highlighting the evolution of the burst emission from the prompt to the afterglow phase. The properties of GRB 130427A are similar to those of the most luminous, high-redshift GRBs, suggesting that a common central engine is responsible for producing GRBs in both the contemporary and the early universe and over the full range of GRB isotropic energies.

4.
Nature ; 476(7361): 421-4, 2011 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-21866154

RESUMO

Supermassive black holes have powerful gravitational fields with strong gradients that can destroy stars that get too close, producing a bright flare in ultraviolet and X-ray spectral regions from stellar debris that forms an accretion disk around the black hole. The aftermath of this process may have been seen several times over the past two decades in the form of sparsely sampled, slowly fading emission from distant galaxies, but the onset of the stellar disruption event has not hitherto been observed. Here we report observations of a bright X-ray flare from the extragalactic transient Swift J164449.3+573451. This source increased in brightness in the X-ray band by a factor of at least 10,000 since 1990 and by a factor of at least 100 since early 2010. We conclude that we have captured the onset of relativistic jet activity from a supermassive black hole. A companion paper comes to similar conclusions on the basis of radio observations. This event is probably due to the tidal disruption of a star falling into a supermassive black hole, but the detailed behaviour differs from current theoretical models of such events.

5.
Nature ; 463(7280): 513-5, 2010 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-20110995

RESUMO

Long duration gamma-ray bursts (GRBs) mark the explosive death of some massive stars and are a rare sub-class of type Ibc supernovae. They are distinguished by the production of an energetic and collimated relativistic outflow powered by a central engine (an accreting black hole or neutron star). Observationally, this outflow is manifested in the pulse of gamma-rays and a long-lived radio afterglow. Until now, central-engine-driven supernovae have been discovered exclusively through their gamma-ray emission, yet it is expected that a larger population goes undetected because of limited satellite sensitivity or beaming of the collimated emission away from our line of sight. In this framework, the recovery of undetected GRBs may be possible through radio searches for type Ibc supernovae with relativistic outflows. Here we report the discovery of luminous radio emission from the seemingly ordinary type Ibc SN 2009bb, which requires a substantial relativistic outflow powered by a central engine. A comparison with our radio survey of type Ibc supernovae reveals that the fraction harbouring central engines is low, about one per cent, measured independently from, but consistent with, the inferred rate of nearby GRBs. Independently, a second mildly relativistic supernova has been reported.

6.
Nature ; 461(7268): 1258-60, 2009 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-19865166

RESUMO

Gamma-ray bursts (GRBs) are produced by rare types of massive stellar explosion. Their rapidly fading afterglows are often bright enough at optical wavelengths that they are detectable at cosmological distances. Hitherto, the highest known redshift for a GRB was z = 6.7 (ref. 1), for GRB 080913, and for a galaxy was z = 6.96 (ref. 2). Here we report observations of GRB 090423 and the near-infrared spectroscopic measurement of its redshift, z = 8.1(-0.3)(+0.1). This burst happened when the Universe was only about 4 per cent of its current age. Its properties are similar to those of GRBs observed at low/intermediate redshifts, suggesting that the mechanisms and progenitors that gave rise to this burst about 600,000,000 years after the Big Bang are not markedly different from those producing GRBs about 10,000,000,000 years later.

7.
Nature ; 455(7210): 183-8, 2008 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-18784718

RESUMO

Long-duration gamma-ray bursts (GRBs) release copious amounts of energy across the entire electromagnetic spectrum, and so provide a window into the process of black hole formation from the collapse of massive stars. Previous early optical observations of even the most exceptional GRBs (990123 and 030329) lacked both the temporal resolution to probe the optical flash in detail and the accuracy needed to trace the transition from the prompt emission within the outflow to external shocks caused by interaction with the progenitor environment. Here we report observations of the extraordinarily bright prompt optical and gamma-ray emission of GRB 080319B that provide diagnostics within seconds of its formation, followed by broadband observations of the afterglow decay that continued for weeks. We show that the prompt emission stems from a single physical region, implying an extremely relativistic outflow that propagates within the narrow inner core of a two-component jet.

8.
Nature ; 453(7194): 469-74, 2008 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-18497815

RESUMO

Massive stars end their short lives in spectacular explosions--supernovae--that synthesize new elements and drive galaxy evolution. Historically, supernovae were discovered mainly through their 'delayed' optical light (some days after the burst of neutrinos that marks the actual event), preventing observations in the first moments following the explosion. As a result, the progenitors of some supernovae and the events leading up to their violent demise remain intensely debated. Here we report the serendipitous discovery of a supernova at the time of the explosion, marked by an extremely luminous X-ray outburst. We attribute the outburst to the 'break-out' of the supernova shock wave from the progenitor star, and show that the inferred rate of such events agrees with that of all core-collapse supernovae. We predict that future wide-field X-ray surveys will catch each year hundreds of supernovae in the act of exploding.

9.
Nature ; 444(7122): 1044-6, 2006 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-17183315

RESUMO

Gamma-ray bursts (GRBs) are known to come in two duration classes, separated at approximately 2 s. Long-duration bursts originate from star-forming regions in galaxies, have accompanying supernovae when these are near enough to observe and are probably caused by massive-star collapsars. Recent observations show that short-duration bursts originate in regions within their host galaxies that have lower star-formation rates, consistent with binary neutron star or neutron star-black hole mergers. Moreover, although their hosts are predominantly nearby galaxies, no supernovae have been so far associated with short-duration GRBs. Here we report that the bright, nearby GRB 060614 does not fit into either class. Its approximately 102-s duration groups it with long-duration GRBs, while its temporal lag and peak luminosity fall entirely within the short-duration GRB subclass. Moreover, very deep optical observations exclude an accompanying supernova, similar to short-duration GRBs. This combination of a long-duration event without an accompanying supernova poses a challenge to both the collapsar and the merging-neutron-star interpretations and opens the door to a new GRB classification scheme that straddles both long- and short-duration bursts.

10.
Nature ; 442(7106): 1008-10, 2006 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-16943830

RESUMO

Although the link between long gamma-ray bursts (GRBs) and supernovae has been established, hitherto there have been no observations of the beginning of a supernova explosion and its intimate link to a GRB. In particular, we do not know how the jet that defines a gamma-ray burst emerges from the star's surface, nor how a GRB progenitor explodes. Here we report observations of the relatively nearby GRB 060218 (ref. 5) and its connection to supernova SN 2006aj (ref. 6). In addition to the classical non-thermal emission, GRB 060218 shows a thermal component in its X-ray spectrum, which cools and shifts into the optical/ultraviolet band as time passes. We interpret these features as arising from the break-out of a shock wave driven by a mildly relativistic shell into the dense wind surrounding the progenitor. We have caught a supernova in the act of exploding, directly observing the shock break-out, which indicates that the GRB progenitor was a Wolf-Rayet star.

11.
Nature ; 438(7070): 994-6, 2005 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-16355219

RESUMO

Two short (< 2 s) gamma-ray bursts (GRBs) have recently been localized and fading afterglow counterparts detected. The combination of these two results left unclear the nature of the host galaxies of the bursts, because one was a star-forming dwarf, while the other was probably an elliptical galaxy. Here we report the X-ray localization of a short burst (GRB 050724) with unusual gamma-ray and X-ray properties. The X-ray afterglow lies off the centre of an elliptical galaxy at a redshift of z = 0.258 (ref. 5), coincident with the position determined by ground-based optical and radio observations. The low level of star formation typical for elliptical galaxies makes it unlikely that the burst originated in a supernova explosion. A supernova origin was also ruled out for GRB 050709 (refs 3, 31), even though that burst took place in a galaxy with current star formation. The isotropic energy for the short bursts is 2-3 orders of magnitude lower than that for the long bursts. Our results therefore suggest that an alternative source of bursts--the coalescence of binary systems of neutron stars or a neutron star-black hole pair--are the progenitors of short bursts.

12.
Nature ; 437(7060): 851-4, 2005 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-16208363

RESUMO

Gamma-ray bursts (GRBs) come in two classes: long (> 2 s), soft-spectrum bursts and short, hard events. Most progress has been made on understanding the long GRBs, which are typically observed at high redshift (z approximately 1) and found in subluminous star-forming host galaxies. They are likely to be produced in core-collapse explosions of massive stars. In contrast, no short GRB had been accurately (< 10'') and rapidly (minutes) located. Here we report the detection of the X-ray afterglow from--and the localization of--the short burst GRB 050509B. Its position on the sky is near a luminous, non-star-forming elliptical galaxy at a redshift of 0.225, which is the location one would expect if the origin of this GRB is through the merger of neutron-star or black-hole binaries. The X-ray afterglow was weak and faded below the detection limit within a few hours; no optical afterglow was detected to stringent limits, explaining the past difficulty in localizing short GRBs.

13.
Science ; 309(5742): 1833-5, 2005 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-16109845

RESUMO

Gamma-ray burst (GRB) afterglows have provided important clues to the nature of these massive explosive events, providing direct information on the nearby environment and indirect information on the central engine that powers the burst. We report the discovery of two bright x-ray flares in GRB afterglows, including a giant flare comparable in total energy to the burst itself, each peaking minutes after the burst. These strong, rapid x-ray flares imply that the central engines of the bursts have long periods of activity, with strong internal shocks continuing for hundreds of seconds after the gamma-ray emission has ended.

14.
Nature ; 436(7053): 985-8, 2005 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-16107840

RESUMO

'Long' gamma-ray bursts (GRBs) are commonly accepted to originate in the explosion of particularly massive stars, which give rise to highly relativistic jets. Inhomogeneities in the expanding flow result in internal shock waves that are believed to produce the gamma-rays we see. As the jet travels further outward into the surrounding circumstellar medium, 'external' shocks create the afterglow emission seen in the X-ray, optical and radio bands. Here we report observations of the early phases of the X-ray emission of five GRBs. Their X-ray light curves are characterised by a surprisingly rapid fall-off for the first few hundred seconds, followed by a less rapid decline lasting several hours. This steep decline, together with detailed spectral properties of two particular bursts, shows that violent shock interactions take place in the early jet outflows.

15.
Nature ; 435(7039): 178-80, 2005 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-15889084

RESUMO

The prompt optical emission that arrives with the gamma-rays from a cosmic gamma-ray burst (GRB) is a signature of the engine powering the burst, the properties of the ultra-relativistic ejecta of the explosion, and the ejecta's interactions with the surroundings. Until now, only GRB 990123 had been detected at optical wavelengths during the burst phase. Its prompt optical emission was variable and uncorrelated with the prompt gamma-ray emission, suggesting that the optical emission was generated by a reverse shock arising from the ejecta's collision with surrounding material. Here we report prompt optical emission from GRB 041219a. It is variable and correlated with the prompt gamma-rays, indicating a common origin for the optical light and the gamma-rays. Within the context of the standard fireball model of GRBs, we attribute this new optical component to internal shocks driven into the burst ejecta by variations of the inner engine. The correlated optical emission is a direct probe of the jet isolated from the medium. The timing of the uncorrelated optical emission is strongly dependent on the nature of the medium.

16.
Nature ; 435(7039): 181-4, 2005 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-15889085

RESUMO

The explosion that results in a cosmic gamma-ray burst (GRB) is thought to produce emission from two physical processes: the central engine gives rise to the high-energy emission of the burst through internal shocking, and the subsequent interaction of the flow with the external environment produces long-wavelength afterglows. Although observations of afterglows continue to refine our understanding of GRB progenitors and relativistic shocks, gamma-ray observations alone have not yielded a clear picture of the origin of the prompt emission nor details of the central engine. Only one concurrent visible-light transient has been found and it was associated with emission from an external shock. Here we report the discovery of infrared emission contemporaneous with a GRB, beginning 7.2 minutes after the onset of GRB 041219a (ref. 8). We acquired 21 images during the active phase of the burst, yielding early multi-colour observations. Our analysis of the initial infrared pulse suggests an origin consistent with internal shocks.

17.
Nature ; 434(7037): 1107-9, 2005 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-15858567

RESUMO

Two classes of rotating neutron stars-soft gamma-ray repeaters (SGRs) and anomalous X-ray pulsars-are magnetars, whose X-ray emission is powered by a very strong magnetic field (B approximately 10(15) G). SGRs occasionally become 'active', producing many short X-ray bursts. Extremely rarely, an SGR emits a giant flare with a total energy about a thousand times higher than in a typical burst. Here we report that SGR 1806-20 emitted a giant flare on 27 December 2004. The total (isotropic) flare energy is 2 x 10(46) erg, which is about a hundred times higher than the other two previously observed giant flares. The energy release probably occurred during a catastrophic reconfiguration of the neutron star's magnetic field. If the event had occurred at a larger distance, but within 40 megaparsecs, it would have resembled a short, hard gamma-ray burst, suggesting that flares from extragalactic SGRs may form a subclass of such bursts.

18.
Astrophys J ; 532(1): L25-L28, 2000 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-10702124

RESUMO

The Robotic Optical Transient Search Experiment (ROTSE) seeks to measure simultaneous and early afterglow optical emission from gamma-ray bursts (GRBs). A search for optical counterparts to six GRBs with localization errors of 1 deg2 or better produced no detections. The earliest limiting sensitivity is mROTSE>13.1 at 10.85 s (5 s exposure) after the gamma-ray rise, and the best limit is mROTSE>16.0 at 62 minutes (897 s exposure). These are the most stringent limits obtained for the GRB optical counterpart brightness in the first hour after the burst. Consideration of the gamma-ray fluence and peak flux for these bursts and for GRB 990123 indicates that there is not a strong positive correlation between optical flux and gamma-ray emission.

19.
Appl Opt ; 37(34): 8067-73, 1998 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-18301699

RESUMO

The practical use of a grazing x-ray telescope is demonstrated for hard-x-ray imaging as hard as 40 keV by means of a depth-graded d-spacing multilayer, a so-called supermirror. Platinum-carbon multilayers of 26 layer pairs in three blocks with a different periodic length d of 3-5 nm were designed to enhance the reflectivity in the energy range from 24 to 36 keV at a grazing angle of 0.3 deg. The multilayers were deposited on thin-replica-foil mirrors by a magnetron dc sputtering system. The reflectivity was measured to be 25%-30% in this energy range; 20 mirror shells thus deposited were assembled into the tightly nested grazing-incidence telescope. The focused hard-x-ray image was observed with a newly developed position-sensitive CdZnTe solid-state detector. The angular resolution of this telescope was found to be 2.4 arc min in the half-power diameter.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...