Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Aging ; 4(3): 336-349, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38267706

RESUMO

Senescent cells, which accumulate in organisms over time, contribute to age-related tissue decline. Genetic ablation of senescent cells can ameliorate various age-related pathologies, including metabolic dysfunction and decreased physical fitness. While small-molecule drugs that eliminate senescent cells ('senolytics') partially replicate these phenotypes, they require continuous administration. We have developed a senolytic therapy based on chimeric antigen receptor (CAR) T cells targeting the senescence-associated protein urokinase plasminogen activator receptor (uPAR), and we previously showed these can safely eliminate senescent cells in young animals. We now show that uPAR-positive senescent cells accumulate during aging and that they can be safely targeted with senolytic CAR T cells. Treatment with anti-uPAR CAR T cells improves exercise capacity in physiological aging, and it ameliorates metabolic dysfunction (for example, improving glucose tolerance) in aged mice and in mice on a high-fat diet. Importantly, a single administration of these senolytic CAR T cells is sufficient to achieve long-term therapeutic and preventive effects.


Assuntos
Envelhecimento , Senescência Celular , Camundongos , Animais , Adipócitos , Transdução de Sinais , Linfócitos T
2.
Res Sq ; 2023 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-37841853

RESUMO

Senescent cells accumulate in organisms over time because of tissue damage and impaired immune surveillance and contribute to age-related tissue decline1,2. In agreement, genetic ablation studies reveal that elimination of senescent cells from aged tissues can ameliorate various age-related pathologies, including metabolic dysfunction and decreased physical fitness3-7. While small-molecule drugs capable of eliminating senescent cells (known as 'senolytics') partially replicate these phenotypes, many have undefined mechanisms of action and all require continuous administration to be effective. As an alternative approach, we have developed a cell-based senolytic therapy based on chimeric antigen receptor (CAR) T cells targeting uPAR, a cell-surface protein upregulated on senescent cells, and previously showed these can safely and efficiently eliminate senescent cells in young animals and reverse liver fibrosis8. We now show that uPAR-positive senescent cells accumulate during physiological aging and that they can be safely targeted with senolytic CAR T cells. Treatment with anti uPAR CAR T cells ameliorates metabolic dysfunction by improving glucose tolerance and exercise capacity in physiological aging as well as in a model of metabolic syndrome. Importantly, a single administration of a low dose of these senolytic CAR T cells is sufficient to achieve long-term therapeutic and preventive effects.

3.
Proc Natl Acad Sci U S A ; 119(28): e2113465119, 2022 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-35867735

RESUMO

The role of autophagy in cancer is complex. Both tumor-promoting and tumor-suppressive effects are reported, with tumor type, stage and specific genetic lesions dictating the role. This calls for analysis in models that best recapitulate each tumor type, from initiation to metastatic disease, to specifically understand the contribution of autophagy in each context. Here, we report the effects of deleting the essential autophagy gene Atg7 in a model of pancreatic ductal adenocarcinoma (PDAC), in which mutant KrasG12D and mutant Trp53172H are induced in adult tissue leading to metastatic PDAC. This revealed that Atg7 loss in the presence of KrasG12D/+ and Trp53172H/+ was tumor promoting, similar to previous observations in tumors driven by embryonic KrasG12D/+ and deletion of Trp53. However, Atg7 hemizygosity also enhanced tumor initiation and progression, even though this did not ablate autophagy. Moreover, despite this enhanced progression, fewer Atg7 hemizygous mice had metastases compared with animals wild type for this allele, indicating that ATG7 is a promoter of metastasis. We show, in addition, that Atg7+/- tumors have comparatively lower levels of succinate, and that cells derived from Atg7+/- tumors are also less invasive than those from Atg7+/+ tumors. This effect on invasion can be rescued by ectopic expression of Atg7 in Atg7+/- cells, without affecting the autophagic capacity of the cells, or by treatment with a cell-permeable analog of succinate. These findings therefore show that ATG7 has roles in invasion and metastasis that are not related to the role of the protein in the regulation of autophagy.


Assuntos
Proteína 7 Relacionada à Autofagia , Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Animais , Proteína 7 Relacionada à Autofagia/genética , Proteína 7 Relacionada à Autofagia/metabolismo , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/secundário , Linhagem Celular Tumoral , Camundongos , Mutação , Invasividade Neoplásica , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Proteínas Proto-Oncogênicas p21(ras)/genética , Succinatos/metabolismo , Succinatos/farmacologia
4.
FEBS J ; 289(13): 3752-3769, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35060334

RESUMO

Macroautophagy is a membrane-trafficking process that delivers cytoplasmic material to lysosomes for degradation. The process preserves cellular integrity by removing damaged cellular constituents and can promote cell survival by providing substrates for energy production during hiatuses of nutrient availability. The process is also highly responsive to other forms of cellular stress. For example, DNA damage can induce autophagy and this involves up-regulation of the Damage-Regulated Autophagy Modulator-1 (DRAM-1) by the tumor suppressor p53. DRAM-1 belongs to an evolutionarily conserved protein family, which has five members in humans and we describe here the initial characterization of two members of this family, which we term DRAM-4 and DRAM-5 for DRAM-Related/Associated Member 4/5. We show that the genes encoding these proteins are not regulated by p53, but instead are induced by nutrient deprivation. Similar to other DRAM family proteins, however, DRAM-4 principally localizes to endosomes and DRAM-5 to the plasma membrane and both modulate autophagy flux when over-expressed. Deletion of DRAM-4 using CRISPR/Cas-9 also increased autophagy flux, but we found that DRAM-4 and DRAM-5 undergo compensatory regulation, such that deletion of DRAM-4 does not affect autophagy flux in the absence of DRAM-5. Similarly, deletion of DRAM-4 also promotes cell survival following growth of cells in the absence of amino acids, serum, or glucose, but this effect is also impacted by the absence of DRAM-5. In summary, DRAM-4 and DRAM-5 are nutrient-responsive members of the DRAM family that exhibit interconnected roles in the regulation of autophagy and cell survival under nutrient-deprived conditions.


Assuntos
Proteínas de Membrana , Proteína Supressora de Tumor p53 , Apoptose/fisiologia , Autofagia/fisiologia , Sobrevivência Celular/genética , Humanos , Proteínas de Membrana/metabolismo , Nutrientes , Proteína Supressora de Tumor p53/genética
5.
Sci Adv ; 7(23)2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34088666

RESUMO

Hepatocellular carcinoma (HCC) is driven by repeated rounds of inflammation, leading to fibrosis, cirrhosis, and, ultimately, cancer. A critical step in HCC formation is the transition from fibrosis to cirrhosis, which is associated with a change in the liver parenchyma called ductular reaction. Here, we report a genetically engineered mouse model of HCC driven by loss of macroautophagy and hemizygosity of phosphatase and tensin homolog, which develops HCC involving ductular reaction. We show through lineage tracing that, following loss of autophagy, mature hepatocytes dedifferentiate into biliary-like liver progenitor cells (ductular reaction), giving rise to HCC. Furthermore, this change is associated with deregulation of yes-associated protein and transcriptional coactivator with PDZ-binding motif transcription factors, and the combined, but not individual, deletion of these factors completely reverses the dedifferentiation capacity and tumorigenesis. These findings therefore increase our understanding of the cell of origin of HCC development and highlight new potential points for therapeutic intervention.

6.
Cancer Discov ; 10(4): 588-607, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31941709

RESUMO

The signature features of pancreatic ductal adenocarcinoma (PDAC) are its fibroinflammatory stroma, poor immune activity, and dismal prognosis. We show that acute activation of Myc in indolent pancreatic intraepithelial neoplasm (PanIN) epithelial cells in vivo is, alone, sufficient to trigger immediate release of instructive signals that together coordinate changes in multiple stromal and immune-cell types and drive transition to pancreatic adenocarcinomas that share all the characteristic stromal features of their spontaneous human counterpart. We also demonstrate that this Myc-driven PDAC switch is completely and immediately reversible: Myc deactivation/inhibition triggers meticulous disassembly of advanced PDAC tumor and stroma and concomitant death of tumor cells. Hence, both the formation and deconstruction of the complex PDAC phenotype are continuously dependent on a single, reversible Myc switch. SIGNIFICANCE: We show that Myc activation in indolent Kras G12D-induced PanIN epithelium acts as an immediate pleiotropic switch, triggering tissue-specific signals that instruct all the diverse signature stromal features of spontaneous human PDAC. Subsequent Myc deactivation or inhibition immediately triggers a program that coordinately disassembles PDAC back to PanIN.See related commentary by English and Sears, p. 495.


Assuntos
Carcinoma Ductal Pancreático/genética , Neoplasias Pancreáticas/genética , Proteínas Proto-Oncogênicas c-myc/genética , Animais , Carcinoma Ductal Pancreático/patologia , Genes myc , Humanos , Camundongos , Neoplasias Pancreáticas/patologia , Fenótipo , Prognóstico , Proteínas Proto-Oncogênicas p21(ras)/genética
7.
Mol Cell ; 76(1): 163-176.e8, 2019 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-31492633

RESUMO

Sensing nutrient availability is essential for appropriate cellular growth, and mTORC1 is a major regulator of this process. Mechanisms causing mTORC1 activation are, however, complex and diverse. We report here an additional important step in the activation of mTORC1, which regulates the efflux of amino acids from lysosomes into the cytoplasm. This process requires DRAM-1, which binds the membrane carrier protein SCAMP3 and the amino acid transporters SLC1A5 and LAT1, directing them to lysosomes and permitting efficient mTORC1 activation. Consequently, we show that loss of DRAM-1 also impacts pathways regulated by mTORC1, including insulin signaling, glycemic balance, and adipocyte differentiation. Interestingly, although DRAM-1 can promote autophagy, this effect on mTORC1 is autophagy independent, and autophagy only becomes important for mTORC1 activation when DRAM-1 is deleted. These findings provide important insights into mTORC1 activation and highlight the importance of DRAM-1 in growth control, metabolic homeostasis, and differentiation.


Assuntos
Aminoácidos/metabolismo , Proteína 7 Relacionada à Autofagia/metabolismo , Metabolismo Energético , Lisossomos/enzimologia , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Proteínas de Membrana/metabolismo , Células 3T3-L1 , Adipócitos/enzimologia , Adipogenia , Sistema ASC de Transporte de Aminoácidos/genética , Sistema ASC de Transporte de Aminoácidos/metabolismo , Sistema y+L de Transporte de Aminoácidos/genética , Sistema y+L de Transporte de Aminoácidos/metabolismo , Animais , Proteína 7 Relacionada à Autofagia/genética , Glicemia/metabolismo , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Ativação Enzimática , Células HEK293 , Células HeLa , Humanos , Insulina/sangue , Transportador 1 de Aminoácidos Neutros Grandes/genética , Transportador 1 de Aminoácidos Neutros Grandes/metabolismo , Masculino , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Proteínas de Membrana/deficiência , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Antígenos de Histocompatibilidade Menor/genética , Antígenos de Histocompatibilidade Menor/metabolismo , Transporte Proteico
8.
Nature ; 563(7733): 719-723, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30464341

RESUMO

It is now well established that tumours undergo changes in cellular metabolism1. As this can reveal tumour cell vulnerabilities and because many tumours exhibit enhanced glucose uptake2, we have been interested in how tumour cells respond to different forms of sugar. Here we report that the monosaccharide mannose causes growth retardation in several tumour types in vitro, and enhances cell death in response to major forms of chemotherapy. We then show that these effects also occur in vivo in mice following the oral administration of mannose, without significantly affecting the weight and health of the animals. Mechanistically, mannose is taken up by the same transporter(s) as glucose3 but accumulates as mannose-6-phosphate in cells, and this impairs the further metabolism of glucose in glycolysis, the tricarboxylic acid cycle, the pentose phosphate pathway and glycan synthesis. As a result, the administration of mannose in combination with conventional chemotherapy affects levels of anti-apoptotic proteins of the Bcl-2 family, leading to sensitization to cell death. Finally we show that susceptibility to mannose is dependent on the levels of phosphomannose isomerase (PMI). Cells with low levels of PMI are sensitive to mannose, whereas cells with high levels are resistant, but can be made sensitive by RNA-interference-mediated depletion of the enzyme. In addition, we use tissue microarrays to show that PMI levels also vary greatly between different patients and different tumour types, indicating that PMI levels could be used as a biomarker to direct the successful administration of mannose. We consider that the administration of mannose could be a simple, safe and selective therapy in the treatment of cancer, and could be applicable to multiple tumour types.


Assuntos
Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Manose/metabolismo , Manose/farmacologia , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Administração Oral , Animais , Apoptose/efeitos dos fármacos , Biomarcadores Tumorais/metabolismo , Peso Corporal/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Regulação para Baixo/efeitos dos fármacos , Sinergismo Farmacológico , Feminino , Glucose/metabolismo , Glicólise/efeitos dos fármacos , Humanos , Manose/administração & dosagem , Manose/uso terapêutico , Manose-6-Fosfato Isomerase/deficiência , Manose-6-Fosfato Isomerase/genética , Manose-6-Fosfato Isomerase/metabolismo , Manosefosfatos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Nus , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Neoplasias/classificação , Neoplasias/patologia , Interferência de RNA , Proteína bcl-X/metabolismo
9.
Trends Cell Biol ; 28(3): 171-173, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29395716

RESUMO

The autophagy-lysosome pathway maintains cellular homeostasis and protects against neurodegenerative disorders. Recent findings show that autophagy can be impaired in these diseases, and that the cell activates an alternative Golgi-mediated degradation pathway, leading to expulsion of toxic protein aggregates. Ultimately this process leads to nuclear breakdown and neuronal cell death.


Assuntos
Autofagia , Lisossomos , Humanos , Doenças Neurodegenerativas , Proteínas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...