Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Rep ; 7(1): 62-9, 2014 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-24685139

RESUMO

The Rif1 protein, originally identified as a telomere-binding factor in yeast, has recently been implicated in DNA replication control from yeast to metazoans. Here, we show that budding yeast Rif1 protein inhibits activation of prereplication complexes (pre-RCs). This inhibitory function requires two N-terminal motifs, RVxF and SILK, associated with recruitment of PP1 phosphatase (Glc7). In G1 phase, we show both that Glc7 interacts with Rif1 in an RVxF/SILK-dependent manner and that two proteins implicated in pre-RC activation, Mcm4 and Sld3, display increased Dbf4-dependent kinase (DDK) phosphorylation in rif1 mutants. Rif1 also interacts with Dbf4 in yeast two-hybrid assays, further implicating this protein in direct modulation of pre-RC activation through the DDK. Finally, we demonstrate Rif1 RVxF/SILK motif-dependent recruitment of Glc7 to telomeres and earlier replication of these regions in cells where the motifs are mutated. Our data thus link Rif1 to negative regulation of replication origin firing through recruitment of the Glc7 phosphatase.


Assuntos
Replicação do DNA/fisiologia , Proteína Fosfatase 1/metabolismo , Origem de Replicação/fisiologia , Proteínas Repressoras/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Ligação a Telômeros/metabolismo , Animais , Proteínas de Ciclo Celular/metabolismo , Fosforilação , Ligação Proteica , Proteína Fosfatase 1/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Repressoras/genética , Proteínas de Saccharomyces cerevisiae/genética , Telômero/genética , Telômero/metabolismo , Proteínas de Ligação a Telômeros/genética
2.
Proc Natl Acad Sci U S A ; 109(28): 11206-10, 2012 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-22733735

RESUMO

Autophagy has been implicated in a number of physiological processes important for human heath and disease. Autophagy involves the formation of a double-membrane cytosolic vesicle, an autophagosome. Central to the formation of the autophagosome is the ubiquitin-like protein autophagy-related (Atg)8 (microtubule-associated protein 1 light chain 3/LC3 in mammalian cells). Following autophagy induction, Atg8 shows the greatest change in expression of any of the proteins required for autophagy. The magnitude of autophagy is, in part, controlled by the amount of Atg8; thus, controlling Atg8 protein levels is one potential mechanism for modulating autophagy activity. We have identified a negative regulator of ATG8 transcription, Ume6, which acts along with a histone deacetylase complex including Sin3 and Rpd3 to regulate Atg8 levels; deletion of any of these components leads to an increase in Atg8 and a concomitant increase in autophagic activity. A similar regulatory mechanism is present in mammalian cells, indicating that this process is highly conserved.


Assuntos
Autofagia , Proteínas Repressoras/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Família da Proteína 8 Relacionada à Autofagia , Deleção de Genes , Células HeLa , Histona Desacetilases/metabolismo , Humanos , Lisossomos/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Modelos Biológicos , Modelos Genéticos , Regiões Promotoras Genéticas , Proteínas Quinases/metabolismo , Transdução de Sinais , Complexo Correpressor Histona Desacetilase e Sin3/metabolismo , Transcrição Gênica , Vacúolos/metabolismo
3.
J Neurosci ; 31(27): 9869-78, 2011 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-21734278

RESUMO

Studies of the zebrafish epithalamus have provided recent insights into the development of left-right brain asymmetry, which is crucial to normal human brain function. The habenular nuclei of zebrafish are robustly asymmetric, with dense elaboration of neuropil only in the left lateral subnucleus. Because this feature is tightly correlated with asymmetric expression of K(+) channel tetramerization domain-containing proteins 12.1 and 12.2 (Kctd12.1/12.2), we screened for Kctd12.1-interacting proteins to identify molecular mechanisms leading to neuropil asymmetry, and uncovered a novel interaction between Kctd12.1 and Unc-51-like kinase 2 (Ulk2). We show here that knockdown of Ulk2 or overexpression of Kctd12 proteins reduces asymmetric neuropil elaboration. Conversely, overexpression of Ulk2 or mutation of kctd12 genes causes excess neuropil elaboration. We conclude that Ulk2 activity promotes neuropil elaboration while Kctd12 proteins limit Ulk2 activity asymmetrically. This work describes a regulatory mechanism for neuronal process extension that may be conserved in other developmental contexts in addition to the epithalamus.


Assuntos
Lateralidade Funcional/fisiologia , Habenula/citologia , Inibição Psicológica , Neurópilo/fisiologia , Proteínas Serina-Treonina Quinases/metabolismo , Alquilantes/farmacologia , Animais , Animais Geneticamente Modificados , Proteínas de Transporte de Cátions/genética , Proteínas de Transporte de Cátions/metabolismo , Etilnitrosoureia/farmacologia , Lateralidade Funcional/efeitos dos fármacos , Lateralidade Funcional/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Proteínas de Fluorescência Verde/genética , Habenula/efeitos dos fármacos , Habenula/crescimento & desenvolvimento , Habenula/lesões , Imunoprecipitação , Larva , Mutação/genética , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Neurópilo/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-myc/metabolismo , RNA Mensageiro/metabolismo , Tubulina (Proteína)/metabolismo , Técnicas do Sistema de Duplo-Híbrido , Peixe-Zebra , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
4.
J Microbiol Biol Educ ; 12(1): 78-9, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-23653753
5.
Proc Natl Acad Sci U S A ; 107(17): 7811-6, 2010 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-20375281

RESUMO

Macroautophagy (hereafter autophagy) is a ubiquitous process in eukaryotic cells that is integrally involved in various aspects of cellular and organismal physiology. The morphological hallmark of autophagy is the formation of double-membrane cytosolic vesicles, autophagosomes, which sequester cytoplasmic cargo and deliver it to the lysosome or vacuole. Thus, autophagy involves dynamic membrane mobilization, yet the source of the lipid that forms the autophagosomes and the mechanism of membrane delivery are poorly characterized. The TRAPP complexes are multimeric guanine nucleotide exchange factors (GEFs) that activate the Rab GTPase Ypt1, which is required for secretion. Here we describe another form of this complex (TRAPPIII) that acts as an autophagy-specific GEF for Ypt1. The Trs85 subunit of the TRAPPIII complex directs this Ypt1 GEF to the phagophore assembly site (PAS) that is involved in autophagosome formation. Consistent with the observation that a Ypt1 GEF is directed to the PAS, we find that Ypt1 is essential for autophagy. This is an example of a Rab GEF that is specifically targeted for canonical autophagosome formation.


Assuntos
Autofagia/fisiologia , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/fisiologia , Proteínas de Transporte Vesicular/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo , Cromatografia em Gel , Primers do DNA/genética , Immunoblotting , Imunoprecipitação , Microscopia de Fluorescência , Fagossomos/metabolismo
6.
Mol Biol Cell ; 20(22): 4730-8, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19793921

RESUMO

Mitophagy is the process of selective mitochondrial degradation via autophagy, which has an important role in mitochondrial quality control. Very little is known, however, about the molecular mechanism of mitophagy. A genome-wide yeast mutant screen for mitophagy-defective strains identified 32 mutants with a block in mitophagy, in addition to the known autophagy-related (ATG) gene mutants. We further characterized one of these mutants, ylr356wDelta that corresponds to a gene whose function has not been identified. YLR356W is a mitophagy-specific gene that was not required for other types of selective autophagy or macroautophagy. The deletion of YLR356W partially inhibited mitophagy during starvation, whereas there was an almost complete inhibition at post-log phase. Accordingly, we have named this gene ATG33. The new mutants identified in this analysis will provide a useful foundation for researchers interested in the study of mitochondrial homeostasis and quality control.


Assuntos
Autofagia/fisiologia , Bioensaio/métodos , Mitocôndrias/fisiologia , Mutação , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Ciclo Celular/fisiologia , Técnicas de Inativação de Genes , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Inanição
7.
Autophagy ; 5(4): 520-6, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19221467

RESUMO

Autophagy mediates the bulk turnover of cytoplasmic constituents in lysosomes. During embryonic development in animals, a dramatic degradation of yolk proteins and synthesis of zygotic proteins takes place, leading to intracellular remodeling and cellular differentiation. Zebrafish represents a unique system to study autophagy due in part to its rapid embryonic development relative to other vertebrates. The technical advantages of this organism make it uniquely suited to various studies including high-throughput drug screens. To study autophagy in zebrafish, we identified two zebrafish Atg8 homologs, lc3 and gabarap, and generated two transgenic zebrafish lines expressing GFP-tagged versions of the corresponding proteins. Similar to yeast Atg8 and mammalian LC3, zebrafish Lc3 undergoes post-translational modification starting at the pharyngula stage during embryonic development. We observed a high level of autophagy activity in zebrafish embryos, which can be further upregulated by the TOR inhibitor rapamycin or the calpain inhibitor calpeptin. In addition, zebrafish Gabarap accumulates within lysosomes upon autophagy induction. Thus, we established a convenient zebrafish tool to assay autophagic activity during embryogenesis in vivo.


Assuntos
Autofagia , Bioensaio/métodos , Proteínas de Transporte/metabolismo , Embrião não Mamífero/citologia , Proteínas de Fluorescência Verde/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/embriologia , Sequência de Aminoácidos , Animais , Animais Geneticamente Modificados , Proteínas de Transporte/química , Dipeptídeos/farmacologia , Embrião não Mamífero/efeitos dos fármacos , Embrião não Mamífero/metabolismo , Desenvolvimento Embrionário/efeitos dos fármacos , Lisossomos/efeitos dos fármacos , Lisossomos/metabolismo , Proteínas Associadas aos Microtúbulos/química , Dados de Sequência Molecular , Isoformas de Proteínas/metabolismo , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Alinhamento de Sequência , Sirolimo/farmacologia , Regulação para Cima/efeitos dos fármacos , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/química
8.
Eukaryot Cell ; 8(4): 560-72, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19218422

RESUMO

Each time Saccharomyces cerevisiae cells divide they ensure that both the mother and daughter cell inherit a vacuole by actively transporting a portion of the vacuole into the bud. As the mother cell begins budding, a tubular and vesicular segregation structure forms that is transported into the bud by the myosin V motor Myo2, which is bound to the vacuole-specific myosin receptor, Vac17 (41, 59, 70, 79). Upon arriving in the bud the segregation structure is resolved to found the daughter vacuole. The mechanism that regulates segregation structure resolution in a spatially dependent manner is unknown. In addition to resolving the segregation structure, Vac17 is degraded specifically in the bud to provide directionality to vacuole inheritance. It has been proposed that bud-specific degradation of Vac17 is promoted by proteins localized to or activated solely in the bud (77). The p21-activated kinases (PAKs) Cla4 and Ste20 are localized to and activated in the bud. Here we report that Cla4 is localized to the segregation structure just prior to segregation structure resolution, and cells lacking PAK function fail to resolve the segregation structure. Overexpression of either Cla4 or Ste20 inhibited vacuole inheritance and this inhibition was suppressed by the expression of nondegradable VAC17. Finally, PAK activity was required for Vac17 degradation in late M phase and CLA4 overexpression promoted Vac17 degradation. We propose that Cla4 and Ste20 are bud-specific proteins that play roles in both segregation structure resolution and the degradation of Vac17.


Assuntos
Citocinese , Regulação Fúngica da Expressão Gênica , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/citologia , Vacúolos/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , MAP Quinase Quinase Quinases , Proteínas Serina-Treonina Quinases/genética , Transporte Proteico , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Especificidade da Espécie , Vacúolos/metabolismo , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...