Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microorganisms ; 11(11)2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-38004803

RESUMO

Blue mold is an economically significant postharvest disease of pome fruit that is primarily caused by Penicillium expansum. To manage this disease and sustain product quality, novel decay intervention strategies are needed that also maintain long-term efficacy. Biocontrol organisms and natural products are promising tools for managing postharvest diseases. Here, two Penicillium chrysogenum isolates, 404 and 413, were investigated as potential biocontrol agents against P. expansum in apple. Notably, 404 and 413 were non-pathogenic in apple, yet they grew vigorously in vitro when compared to the highly aggressive P. expansum R19 and Pe21 isolates. Whole-genome sequencing and species-specific barcoding identified both strains as P. chrysogenum. Each P. chrysogenum strain was inoculated in apple with the subsequent co-inoculation of R19 or Pe21 simultaneously, 3, or 7 days after prior inoculation with 404 or 413. The co-inoculation of these isolates showed reduced decay incidence and severity, with the most significant reduction from the longer establishment of P. chrysogenum. In vitro growth showed no antagonism between species, further suggesting competitive niche colonization as the mode of action for decay reduction. Both P. chrysogenum isolates had incomplete patulin gene clusters but tolerated patulin treatment. Finally, hygromycin resistance was observed for both P. chrysogenum isolates, yet they are not multiresistant to apple postharvest fungicides. Overall, we demonstrate the translative potential of P. chrysogenum to serve as an effective biocontrol agent against blue mold decay in apples, pending practical optimization and formulation.

2.
New Phytol ; 237(4): 1463-1473, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36385249

RESUMO

Sequencing herbarium specimens can be instrumental in answering ecological, evolutionary, and taxonomic inquiries. We developed a protocol for sequencing herbarium specimens of rust fungi (Pucciniales) and proceeded to sequence specimens ranging from 4 to 211 yr old from five different genera. We then obtained sequences from an economically important biological control agent, Puccinia suaveolens, to highlight the potential of sequencing herbarium specimens in an ecological sense and to evaluate the following hypotheses: (1) The population structure of a plant pathogen changes over time, and (2) introduced pathogens are more diverse in their native range. Our efforts resulted in sequences from 87 herbarium specimens that revealed a high level of diversity with a population structure that exhibited spatial-temporal patterns. The specimens sequenced from Europe showed more diversity than the ones from North America, uncovering an invasion pattern likely related to its European native host in North America. Additionally, to the best of our knowledge, the specimen from France collected in c. 1811 is the oldest herbarium specimen sequenced from kingdom Fungi. In conclusion, sequencing old herbarium specimens is an important tool that can be extrapolated to better understand plant-microbe evolution and to evaluate old type specimens to solidify the taxonomy of plant pathogenic fungi.


Assuntos
Basidiomycota , Fungos , Fungos/genética , Basidiomycota/genética , Europa (Continente) , França , América do Norte
3.
Microorganisms ; 10(12)2022 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-36557667

RESUMO

Blue mold, caused by Penicillium spp., is an impactful postharvest disease resulting in significant economic losses due to reduced pome fruit quality and mycotoxin contamination. Using two Penicillium species with different levels of aggressiveness, transcriptomics were implemented in order to identify genes expressed during apple fruit decay and loci expressed in ungerminated conidia. Total RNA was isolated from ungerminated conidia and decayed apple fruit infected with P. expansum R19 or P. polonicum RS1. There were 2442 differentially expressed genes (DEGs) between the R19 and RS1 in apple. Comparisons within species between apple and conidia revealed 4404 DEGs for R19 and 2935 for RS1, respectively. Gene ontology (GO) analysis revealed differential regulation in fungal transport and metabolism genes during decay, suggesting a flux in nutrient acquisition and detoxification strategies. In R19, the oxidoreductase GO category comprised 20% of all DEG groups in apple verses conidia. Ungerminated conidia from both species showed DEGs encoding the glyoxylate shunt and beta-oxidation, specifying the earliest metabolic requirements for germination. This is the first study to identify pre-loaded transcripts in conidia from blue mold fungi, reveal unique genes between species expressed during apple decay, and show the expression dynamics of known fungal virulence factors. These findings will enable development of targeted approaches for blue mold abatement strategies.

4.
Phytopathology ; 112(5): 1165-1174, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35365059

RESUMO

Mycotoxin contamination is a leading cause of food spoilage and waste on a global scale. Patulin, a mycotoxin produced by Penicillium spp. during postharvest pome fruit decay, causes acute and chronic effects in humans, withstands pasteurization, and is not eliminated by fermentation. While much is known about the impact of patulin on human health, there are significant knowledge gaps concerning the effect of patulin during postharvest fruit-pathogen interactions. Application of patulin on six apple cultivars reproduced some blue mold symptoms that were cultivar-independent and dose-dependent. Identical symptoms were also observed in pear and mandarin orange. Six Penicillium isolates exposed to exogenous patulin exhibited delayed germination after 24 h, yet all produced viable colonies in 7 days. However, four common postharvest phytopathogenic fungi were completely inhibited by patulin during conidial germination and growth, suggesting the toxin is important for Penicillium to dominate the postharvest niche. Using clorgyline, a broad-spectrum efflux pump inhibitor, we demonstrated that efflux plays a role in Penicillium auto-resistance to patulin during conidial germination. The work presented here contributes new knowledge of patulin auto-resistance, its mode of action, and inhibitory role in fungal-fungal interactions. Our findings provide a solid foundation to develop toxin and decay mitigation approaches.


Assuntos
Malus , Patulina , Penicillium , Frutas/microbiologia , Malus/microbiologia , Patulina/análise , Patulina/farmacologia , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Virulência
5.
Phytopathology ; 111(11): 1942-1951, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33938237

RESUMO

Fungicides are the primary tools to control a wide range of postharvest fungal pathogens. Fungicide resistance is a widespread problem that has reduced the efficacy of fungicides. Resistance to FRAC-1 (Fungicide Resistance Action Committee-1) chemistries is associated with mutations in amino acid position 198 in the ß-tubulin gene. In our study, we conducted a meta-analysis of ß-tubulin sequences to infer temporal, spatial, plant host, and pathogen genus patterns of fungicide resistance in postharvest fungal pathogens. In total, data were acquired from 2,647 specimens from 12 genera of fungal phytopathogens residing in 53 countries on >200 hosts collected between 1926 and 2020. The specimens containing a position 198 mutation were globally distributed in a variety of pathosystems. Analyses showed that there are associations among the mutation and the year an isolate was collected, the pathogen genus, the pathogen host, and the collection region. Interestingly, fungicide-resistant ß-tubulin genotypes have been in a decline since their peak between 2005 and 2009. FRAC-1 fungicide usage data followed a similar pattern in that applications have been in a decline since their peak between 1997 and 2003. The data show that, with the reduction of selection pressure, FRAC-1 fungicide resistance in fungal populations will decline within 5 to 10 years. Based on this line of evidence, we contend that a ß-tubulin position 198 mutation has uncharacterized fitness cost(s) on fungi in nature. The compiled dataset can inform end users on the regions and hosts that are most prone to contain resistant pathogens and assist decisions concerning fungicide resistance management strategies.


Assuntos
Fungicidas Industriais , Farmacorresistência Fúngica/genética , Fungos , Fungicidas Industriais/farmacologia , Mutação , Doenças das Plantas
6.
Front Microbiol ; 12: 611881, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33643240

RESUMO

Mycotoxins are a prevalent problem for stored fruits, grains, and vegetables. Alternariol, aflatoxin, and patulin, produced by Alternaria spp., Aspergillus spp., and Penicillium spp., are the major mycotoxins that negatively affect human and animal health and reduce fruit and produce quality. Control strategies for these toxins are varied, but one method that is increasing in interest is through host microbiome manipulation, mirroring a biocontrol approach. While the majority of mycotoxins and other secondary metabolites (SM) produced by fungi impact host-fungal interactions, there is also an interplay between the various organisms within the host microbiome. In addition to SMs, these interactions involve compounds such as signaling molecules, plant defense and growth hormones, and metabolites produced by both the plants and microbial community. Therefore, studies to understand the impact of the various toxins impacting the beneficial and harmful microorganisms that reside within the microbiome is warranted, and could lead to identification of safe analogs for antimicrobial activity to reduce fruit decay. Additionally, exploring the composition of the microbial carposphere of host plants is likely to shed light on developing a microbial consortium to maintain quality during storage and abate mycotoxin contamination.

7.
Front Microbiol ; 12: 806504, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35237242

RESUMO

The bacterial phytopathogen Pantoea stewartii subsp. stewartii causes leaf blight and Stewart's wilt disease in susceptible corn varieties. A previous RNA-Seq study examined P. stewartii gene expression patterns during late-stage infection in the xylem, and a Tn-Seq study using a P. stewartii mutant library revealed genes essential for colonization of the xylem. Based on these findings, strains with in-frame chromosomal deletions in the genes encoding seven transcription factors (NsrR, IscR, Nac, Lrp, DSJ_00125, DSJ_03645, and DSJ_18135) and one hypothetical protein (DSJ_21690) were constructed to further evaluate the role of the encoded gene products during in vitro and in planta growth. Assays for capsule production and motility indicate that Lrp plays a role in regulating these two key physiological outputs in vitro. Single infections of each deletion strain into the xylem of corn seedlings determined that Lrp plays a significant role in P. stewartii virulence. In planta xylem competition assays between co-inoculated deletion and the corresponding complementation or wild-type strains as well as in vitro growth curves determined that Lrp controls functions important for P. stewartii colonization and growth in corn plants, whereas IscR may have a more generalized impact on growth. Defining the role of essential transcription factors, such as Lrp, during in planta growth will enable modeling of key components of the P. stewartii regulatory network utilized during growth in corn plants.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...