Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 442, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38200029

RESUMO

In quantum magnetic materials, ordered phases induced by an applied magnetic field can be described as the Bose-Einstein condensation (BEC) of magnon excitations. In the strongly frustrated system SrCu2(BO3)2, no clear magnon BEC could be observed, pointing to an alternative mechanism, but the high fields required to probe this physics have remained a barrier to detailed investigation. Here we exploit the first purpose-built high-field neutron scattering facility to measure the spin excitations of SrCu2(BO3)2 up to 25.9 T and use cylinder matrix-product-states (MPS) calculations to reproduce the experimental spectra with high accuracy. Multiple unconventional features point to a condensation of S = 2 bound states into a spin-nematic phase, including the gradients of the one-magnon branches and the persistence of a one-magnon spin gap. This gap reflects a direct analogy with superconductivity, suggesting that the spin-nematic phase in SrCu2(BO3)2 is best understood as a condensate of bosonic Cooper pairs.

2.
J Am Chem Soc ; 145(18): 10208-10219, 2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-37098172

RESUMO

High-voltage LiCoO2 (LCO) attracts great interest because of its large specific capacity, but it suffers from oxygen release, structural degradation, and quick capacity drop. These daunting issues root from the inferior thermodynamics and kinetics of the triggered oxygen anion redox (OAR) at high voltages. Herein, a tuned redox mechanism with almost only Co redox is demonstrated by atomically engineered high-spin LCO. The high-spin Co network reduces the Co/O band overlap, eliminates the adverse phase transition of O3 → H1-3, delays the exceeding of the O 2p band over the Fermi level, and suppresses excessive O → Co charge transfer at high voltages. This function intrinsically promotes Co redox and restrains O redox, fundamentally addressing the issues of O2 release and coupled detrimental Co reduction. Moreover, the chemomechanical heterogeneity caused by different kinetics of Co/O redox centers and the inferior rate performance limited by slow O redox kinetics is simultaneously improved owing to the suppression of slow OAR and the excitation of fast Co redox. The modulated LCO delivers ultrahigh rate capacities of 216 mAh g-1 (1C) and 195 mAh g-1(5C), as well as high capacity retentions of 90.4% (@100 cycles) and 86.9% (@500 cycles). This work sheds new light on the design for a wide range of O redox cathodes.

3.
J Appl Crystallogr ; 55(Pt 5): 1314-1323, 2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-36249498

RESUMO

Bragg diffracted intensities and q values for crystalline structures with long repeat distances may be obtained by small-angle neutron scattering (SANS) investigations. An account is given of the methods, advantages and disadvantages of obtaining such data by the multichromatic time-of-flight method, compared with the more traditional quasi-monochromatic SANS method. This is illustrated with data obtained from high-magnetic-field measurements on magnetic vortex line lattices in superconductors on the former HFM/EXED instrument at Helmholtz-Zentrum Berlin. The methods have application to other mesoscopic crystalline structures investigated by SANS instruments at pulsed sources.

4.
Small ; 18(18): e2201014, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35373917

RESUMO

High-capacity Li-rich Mn-based oxide cathodes show a great potential in next generation Li-ion batteries but suffer from some critical issues, such as, lattice oxygen escape, irreversible transition metal (TM) cation migration, and voltage decay. Herein, a comprehensive structural modulation in the bulk and surface of Li-rich cathodes is proposed through simultaneously introducing oxygen vacancies and P doping to mitigate these issues, and the improvement mechanism is revealed. First, oxygen vacancies and P doping elongates OO distance, which lowers the energy barrier and enhances the reversible cation migration. Second, reversible cation migration elevates the discharge voltage, inhibits voltage decay and lattice oxygen escape by increasing the Li vacancy-TM antisite at charge, and decreasing the trapped cations at discharge. Third, oxygen vacancies vary the lattice arrangement on the surface from a layered lattice to a spinel phase, which deactivates oxygen redox and restrains oxygen gas (O2 ) escape. Fourth, P doping enhances the covalency between cations and anions and elevates lattice stability in bulk. The modulated Li-rich cathode exhibits a high-rate capability, a good cycling stability, a restrained voltage decay, and an elevated working voltage. This study presents insights into regulating oxygen redox by facilitating reversible cation migration and suppressing O2 escape.

5.
Angew Chem Int Ed Engl ; 61(16): e202115552, 2022 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-35112438

RESUMO

Improving the reversibility of oxygen redox is quite significant for layered oxides cathodes in sodium-ion batteries. Herein, we for the first time simultaneously tune bulk O2 and nonbonding oxygen state for reversible oxygen redox chemistry in P2-Na0.67 Mn0.5 Fe0.5 O2 through a synergy of Li2 TiO3 coating and Li/Ti co-doping. O2- is oxidized to molecular O2 and peroxide (O2 )n- (n<2) during charging. Molecular O2 derived from transition metal (TM) migration is related to the superstructure ordering induced by Li doping. The synergy mechanism of Li2 TiO3 coating and Li/Ti co-doping on the two O-redox modes is revealed. Firstly, Li2 TiO3 coating restrains the surface O2 and inhibits O2 loss. Secondly, nonbonding Li-O-Na enhances the reversibility of O2- →(O2 )n- . Thirdly, Ti doping strengthens the TM-O bond which fixes lattice oxygen. The cationic redox reversibility is also enhanced by Li/Ti co-doping. The proposed insights into the oxygen redox reversibility are insightful for other oxide cathodes.

6.
J Appl Crystallogr ; 53(Pt 6): 1613-1619, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-33304227

RESUMO

The Extreme Environment Diffractometer was a neutron time-of-flight instrument equipped with a constant-field hybrid magnet providing magnetic fields up to 26 T. The magnet infrastructure and sample environment imposed limitations on the geometry of the experiment, making it necessary to plan the experiment with care. EXEQ is the software tool developed to allow users of the instrument to find the optimal sample orientation for their diffraction experiment. InEXEQ fulfilled the same role for the inelastic neutron scattering experiments. The source code of the software is licensed under the GNU General Public Licence 3, allowing it to be used by other facilities and adapted for use on other instruments.

7.
Rev Sci Instrum ; 86(3): 033102, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25832206

RESUMO

The Extreme Environment Diffractometer (EXED) is a new neutron time-of-flight instrument at the BER II research reactor at the Helmholtz-Zentrum Berlin, Germany. Although EXED is a special-purpose instrument, its early construction made it available for users as a general-purpose diffractometer. In this respect, EXED became one of the rare examples, where the performance of a time-of-flight diffractometer at a continuous source can be characterized. In this paper, we report on the design and performance of EXED with an emphasis on the unique instrument capabilities. The latter comprise variable wavelength resolution and wavelength band, control of the incoming beam divergence, the possibility to change the angular positions of detectors and their distance to the sample, and use of event recording and offline histogramming. These features combined make EXED easily tunable to the requirements of a particular problem, from conventional diffraction to small angle neutron scattering. The instrument performance is demonstrated by several reference measurements and user experiments.

8.
Phys Rev Lett ; 101(20): 207203, 2008 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-19113374

RESUMO

Transmission probability of a domain wall through a magnetic nanowire is investigated as a function of the external magnetic field. A very intriguing phenomenon is found that the transmission probability shows a significant drop after exceeding the threshold driving field, which contradicts our intuition that a domain wall is more mobile in the higher magnetic field. The micromagnetics simulation reveals that the domain wall motion in the wire with finite roughness causes the dynamical pinning due to the Walker breakdown, which semiquantitatively explains our experimental results.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...