Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Beilstein J Org Chem ; 16: 2687-2700, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33178359

RESUMO

Gold nanoparticles covered with a mixture of ligands of which one type contains solubilizing triethylene glycol residues and the other peripheral zinc(II)-dipicolylamine (DPA) complexes allowed the optical detection of hydrogenphosphate, diphosphate, and triphosphate anions in water/methanol 1:2 (v/v). These anions caused the bright red solutions of the nanoparticles to change their color because of nanoparticle aggregation followed by precipitation, whereas halides or oxoanions such as sulfate, nitrate, or carbonate produced no effect. The sensitivity of phosphate sensing depended on the nature of the anion, with diphosphate and triphosphate inducing visual changes at significantly lower concentrations than hydrogenphosphate. In addition, the sensing sensitivity was also affected by the ratio of the ligands on the nanoparticle surface, decreasing as the number of immobilized zinc(II)-dipicolylamine groups increased. A nanoparticle containing a 9:1 ratio of the solubilizing and the anion-binding ligand showed a color change at diphosphate and triphosphate concentrations as low as 10 µmol/L, for example, and precipitated at slightly higher concentrations. Hydrogenphosphate induced a nanoparticle precipitation only at a concentration of ca. 400 µmol/L, at which the precipitates formed in the presence of diphosphates and triphosphates redissolved. A nanoparticle containing fewer binding sites was more sensitive, while increasing the relative number of zinc(II)-dipicolylamine complexes beyond 25% had a negative impact on the limit of detection and the optical response. Transmission electron microscopy provided evidence that the changes of the nanoparticle properties observed in the presence of the phosphates were due to a nanoparticle crosslinking, consistent with the preferred binding mode of zinc(II)-dipicolylamine complexes with phosphate anions which involves binding of the anion between two metal centers. This work thus provided information on how the behavior of mixed monolayer-protected gold nanoparticles is affected by multivalent interactions, at the same time introducing a method to assess whether certain biologically relevant anions are present in an aqueous solution within a specific concentration range.

2.
Chem Commun (Camb) ; 56(72): 10457-10460, 2020 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-32856639

RESUMO

The interaction of cyclopeptides bound to the surface of mixed monolayer-protected gold nanoparticles with sulfate anions causes the crosslinking and concomitant precipitation of the nanoparticles from aqueous solutions even in presence of an excess of competing anions, thus allowing the naked eye detection of sulfate in water.


Assuntos
Ouro/química , Nanopartículas Metálicas/química , Peptídeos Cíclicos/química , Sulfatos/análise , Água/química , Precipitação Química , Sulfatos/química , Propriedades de Superfície
3.
Chempluschem ; 85(5): 963-969, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32406613

RESUMO

A molecular cage consisting of two cyclic hexapeptides with an alternating sequence of (2S,4S)-4-aminoproline and 6-aminopicolinic acid subunits, covalently linked via three diglycolic acid subunits, interacts with a variety of inorganic anions in acetonitrile/water. In the respective complexes, the anion resides in a cavity between the two cyclopeptide rings where it interacts with six converging NH groups. The cage binds sulfate anions in acetonitrile/water, 2 : 1 (v/v) with a log Ka of 6.7, ca. 2.5 orders of magnitude stronger than an analogous bis(cyclopeptide) with only one linker whose sulfate affinity log Ka amounts to 4.3. The preorganization induced by the three linking units is thus beneficial for sulfate binding. In addition, these linkers cause the dissociation of the sulfate complex to have a substantial Gibbs free energy of activation ΔG≠ of 68.9 kJ mol-1 and they also seem to affect anion selectivity as illustrated by the different effects some anions produce on the 1 H NMR spectra of the triply and singly-linked bis(cyclopeptides). Such anion binding cages represent promising scaffolds to mimic natural anion receptors such as the sulfate-binding protein.


Assuntos
Peptídeos Cíclicos/química , Água/química , Ânions/química , Ânions/metabolismo , Iodetos/química , Iodetos/metabolismo , Cinética , Espectroscopia de Ressonância Magnética , Peptídeos Cíclicos/síntese química , Sulfatos/química , Sulfatos/metabolismo , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...